将 Fill_Value 插入 R 中的 nc 文件

Insert Fill_Value to nc file in R

我正在尝试将 .nc 文件转换为 .csv 文件以便在 R 中进行进一步分析,因为我习惯于使用 .csv

基本上我认为要解决我的问题(下面有更多详细信息),我需要将 _FillValue 添加到 .nc 文件中,但我尝试过的所有方法都不起作用。

我已经按照 http://geog.uoregon.edu/bartlein/courses/geog490/week04-netCDF.html#replace-netcdf-fillvalues-with-r-nas 中采取的步骤成功地为许多 .nc 文件做到了这一点,直到第 3.4.3 节。

但是,我最近获得了对另一个 .nc 文件的访问权限,但同一过程无法正常工作。我想我已经将范围缩小到新 .nc 文件中没有 _FillValue 的事实。

看起来 _FillValue 应该是 "9.97e+36"。我尝试使用

添加此数字作为缺失值
ncin <- nc_open(ncfname, write=T)
dname <- "tas"
Mvalue <- 9.97e+36
ncvar_change_missval(ncin, dname, Mvalue)

这似乎是将 missing_value:9.97e+36 添加到 .nc 文件中。但是,当我 运行: tmp_array <- ncvar_get(ncin,dname) 时 tmp_array 仍然有 9.97e+36。

我希望 tmp_array 已经将 9.97e+36 替换为 NA,就像它对它工作的文件所做的那样。

有没有一种方法可以将 _FillValue 添加到我的文件中,以便它用 NA 替换这些值?

如果需要,这是无法工作的文件的信息:

> print(ncin)
File ./data/UKCP18/Mean_air_temperature_(tas)/.nc_files/tas_hadukgrid_uk_1km_mon_201801-201812.nc (NC_FORMAT_NETCDF4):

     9 variables (excluding dimension variables):
        double tas[projection_x_coordinate,projection_y_coordinate,time]   (Contiguous storage)  
            standard_name: air_temperature
            long_name: Mean air temperature
            units: degC
            description: Mean air temperature
            label_units: C
            level: 1.5m
            plot_label: Mean air temperature at 1.5m (C)
            cell_methods: time: mid_range within days time: mean over days
            grid_mapping: transverse_mercator
            coordinates: latitude longitude month_number season_year
            missing_value: 9.97e+36
        int transverse_mercator[]   (Contiguous storage)  
            grid_mapping_name: transverse_mercator
            longitude_of_prime_meridian: 0
            semi_major_axis: 6377563.396
            semi_minor_axis: 6356256.909
            longitude_of_central_meridian: -2
            latitude_of_projection_origin: 49
            false_easting: 4e+05
            false_northing: -1e+05
            scale_factor_at_central_meridian: 0.9996012717
        double time_bnds[bnds,time]   (Contiguous storage)  
        double projection_y_coordinate_bnds[bnds,projection_y_coordinate]   (Contiguous storage)  
        double projection_x_coordinate_bnds[bnds,projection_x_coordinate]   (Contiguous storage)  
        8 byte int month_number[time]   (Contiguous storage)  
            units: 1
            long_name: month_number
        8 byte int season_year[time]   (Contiguous storage)  
            units: 1
            long_name: season_year
        double latitude[projection_x_coordinate,projection_y_coordinate]   (Contiguous storage)  
            units: degrees_north
            standard_name: latitude
        double longitude[projection_x_coordinate,projection_y_coordinate]   (Contiguous storage)  
            units: degrees_east
            standard_name: longitude

     4 dimensions:
        time  Size:12
            axis: T
            bounds: time_bnds
            units: hours since 1800-01-01 00:00:00
            standard_name: time
            calendar: gregorian
        projection_y_coordinate  Size:1450
            axis: Y
            bounds: projection_y_coordinate_bnds
            units: m
            standard_name: projection_y_coordinate
        projection_x_coordinate  Size:900
            axis: X
            bounds: projection_x_coordinate_bnds
            units: m
            standard_name: projection_x_coordinate
        bnds  Size:2

    11 global attributes:
        _NCProperties: version=1|netcdflibversion=4.6.1|hdf5libversion=1.10.2
        comment: Monthly resolution gridded climate observations
        creation_date: 2019-08-09T20:34:33
        frequency: mon
        institution: Met Office
        references: doi: 10.1002/joc.1161
        short_name: monthly_meantemp
        source: HadUK-Grid_v1.0.1.0
        title: Gridded surface climate observations data for the UK
        version: v20190808
        Conventions: CF-1.5

我找到了灵魂。我想我会 post 到这里来,以防有人发现自己也被困住了!

我意识到也许 missing_value 不仅仅是 9.97e+36,而是有更多的小数点。我 运行 这是为了找出完整的 missing_value 然后我将其设置为 missing_value 所以 ncvar_get() 工作正确。

ncin <- nc_open(ncfname, write=T)
print(ncin)

tmp_array <- ncvar_get(ncin,dname) # This produced an array with the missing value inserted - should be replaced with NAs

# What is the missing value up to 100 decimal points?!
sprintf("%.100f", tmp_array[1,1,1]) 

# Set missing value
Mvalue <- 9.969209968386869047442886268468442020e+36

# insert missing_value to .nc file
ncvar_change_missval(ncin, dname, Mvalue)
print(ncin)

# make new array with values replaced with NAs
tmp_array <- ncvar_get(ncin,dname)

然后我继续按照 http://geog.uoregon.edu/bartlein/courses/geog490/week04-netCDF.html#replace-netcdf-fillvalues-with-r-nas 中概述的过程直到 3.4.3 生成我的 .csv

呸!谢谢大家:)