无法在 Pandas 中保存值
Not able to save values in Pandas
我能够看到收报机收到了数据,但我无法将其写入 pandas 文件 df
。
stock_data = []
with open('Nifty 50 Scrapped data.csv') as csvfile:
stockticker_data = csv.reader(csvfile, delimiter=' ')
for row in stockticker_data:
print(row)
for ticker in row:
stock_data.append(web.get_data_yahoo(ticker, '1/1/2018', '1/1/2019'))
# stock_data.append(all_data)
df = pd.DataFrame(stock_data)
print(df)
如果我 print(stock_data)
而不是 print(df)
我得到以下输出:
['ASIANPAINT.NS']
[ High Low ... Volume Adj Close
Date ...
2018-01-01 1165.000000 1138.099976 ... 591349.0 1129.451782
2018-01-02 1150.000000 1134.050049 ... 516171.0 1128.562866
2018-01-03 1149.000000 1135.300049 ... 593809.0 1127.723511
2018-01-04 1178.000000 1145.900024 ... 729965.0 1157.499146
2018-01-05 1192.000000 1167.449951 ... 1151320.0 1170.535278
... ... ... ... ... ...
2018-12-27 1384.750000 1354.300049 ... 2174090.0 1365.134155
2018-12-28 1383.000000 1359.000000 ... 1705033.0 1358.669067
2018-12-31 1378.000000 1367.300049 ... 698593.0 1365.681274
2019-01-01 1379.699951 1358.599976 ... 664707.0 1364.189331
2019-01-02 1386.849976 1361.599976 ... 1233780.0 1375.876221
[248 rows x 6 columns]]
['AXISBANK.NS']
[ High Low ... Volume Adj Close
Date ...
2018-01-01 1165.000000 1138.099976 ... 591349.0 1129.451782
2018-01-02 1150.000000 1134.050049 ... 516171.0 1128.562866
2018-01-03 1149.000000 1135.300049 ... 593809.0 1127.723511
2018-01-04 1178.000000 1145.900024 ... 729965.0 1157.499146
2018-01-05 1192.000000 1167.449951 ... 1151320.0 1170.535278
... ... ... ... ... ...
2018-12-27 1384.750000 1354.300049 ... 2174090.0 1365.134155
2018-12-28 1383.000000 1359.000000 ... 1705033.0 1358.669067
2018-12-31 1378.000000 1367.300049 ... 698593.0 1365.681274
2019-01-01 1379.699951 1358.599976 ... 664707.0 1364.189331
2019-01-02 1386.849976 1361.599976 ... 1233780.0 1375.876221
这是我想要的,但是 df = pd.DataFrame(stock_data)
print(df)
的输出是
['ASIANPAINT.NS']
0
0 High Low ... ...
['AXISBANK.NS']
0
0 High Low ... ...
1 High Low ... Vol...
['BAJAJ-AUTO.NS']
0
0 High Low ... ...
1 High Low ... Vol...
2 High Low ... V...
为什么这里没有显示数据?
stock_data = []
with open('Nifty 50 Scrapped data.csv') as csvfile:
stockticker_data = csv.reader(csvfile, delimiter=' ')
for row in stockticker_data:
print(row)
for ticker in row:
stock_data.append(web.get_data_yahoo(ticker,'1/1/2018','1/1/2019'))
# stock_data.append(all_data)
df = pd.DataFrame(stock_data)
print(df)
试试这个,也许那个循环会弄乱你的 df
我能够看到收报机收到了数据,但我无法将其写入 pandas 文件 df
。
stock_data = []
with open('Nifty 50 Scrapped data.csv') as csvfile:
stockticker_data = csv.reader(csvfile, delimiter=' ')
for row in stockticker_data:
print(row)
for ticker in row:
stock_data.append(web.get_data_yahoo(ticker, '1/1/2018', '1/1/2019'))
# stock_data.append(all_data)
df = pd.DataFrame(stock_data)
print(df)
如果我 print(stock_data)
而不是 print(df)
我得到以下输出:
['ASIANPAINT.NS']
[ High Low ... Volume Adj Close
Date ...
2018-01-01 1165.000000 1138.099976 ... 591349.0 1129.451782
2018-01-02 1150.000000 1134.050049 ... 516171.0 1128.562866
2018-01-03 1149.000000 1135.300049 ... 593809.0 1127.723511
2018-01-04 1178.000000 1145.900024 ... 729965.0 1157.499146
2018-01-05 1192.000000 1167.449951 ... 1151320.0 1170.535278
... ... ... ... ... ...
2018-12-27 1384.750000 1354.300049 ... 2174090.0 1365.134155
2018-12-28 1383.000000 1359.000000 ... 1705033.0 1358.669067
2018-12-31 1378.000000 1367.300049 ... 698593.0 1365.681274
2019-01-01 1379.699951 1358.599976 ... 664707.0 1364.189331
2019-01-02 1386.849976 1361.599976 ... 1233780.0 1375.876221
[248 rows x 6 columns]]
['AXISBANK.NS']
[ High Low ... Volume Adj Close
Date ...
2018-01-01 1165.000000 1138.099976 ... 591349.0 1129.451782
2018-01-02 1150.000000 1134.050049 ... 516171.0 1128.562866
2018-01-03 1149.000000 1135.300049 ... 593809.0 1127.723511
2018-01-04 1178.000000 1145.900024 ... 729965.0 1157.499146
2018-01-05 1192.000000 1167.449951 ... 1151320.0 1170.535278
... ... ... ... ... ...
2018-12-27 1384.750000 1354.300049 ... 2174090.0 1365.134155
2018-12-28 1383.000000 1359.000000 ... 1705033.0 1358.669067
2018-12-31 1378.000000 1367.300049 ... 698593.0 1365.681274
2019-01-01 1379.699951 1358.599976 ... 664707.0 1364.189331
2019-01-02 1386.849976 1361.599976 ... 1233780.0 1375.876221
这是我想要的,但是 df = pd.DataFrame(stock_data)
print(df)
的输出是
['ASIANPAINT.NS']
0
0 High Low ... ...
['AXISBANK.NS']
0
0 High Low ... ...
1 High Low ... Vol...
['BAJAJ-AUTO.NS']
0
0 High Low ... ...
1 High Low ... Vol...
2 High Low ... V...
为什么这里没有显示数据?
stock_data = []
with open('Nifty 50 Scrapped data.csv') as csvfile:
stockticker_data = csv.reader(csvfile, delimiter=' ')
for row in stockticker_data:
print(row)
for ticker in row:
stock_data.append(web.get_data_yahoo(ticker,'1/1/2018','1/1/2019'))
# stock_data.append(all_data)
df = pd.DataFrame(stock_data)
print(df)
试试这个,也许那个循环会弄乱你的 df