Numpy:没有循环的多轴上的argmax

Numpy: argmax over multiple axes without loop

我有一个 N 维数组(名为 A)。对于 A 的第一轴的每一行,我想获得沿 A 的其他轴的最大值的坐标。然后我将 return 一个二维数组,其中每行的最大值的坐标A的第一个轴。

我已经使用循环解决了我的问题,但我想知道是否有更有效的方法来执行此操作。我当前的解决方案(例如数组 A)如下:

import numpy as np

A=np.reshape(np.concatenate((np.arange(0,12),np.arange(0,-4,-1))),(4,2,2))
maxpos=np.empty(shape=(4,2))
for n in range(0, 4):
    maxpos[n,:]=np.unravel_index(np.argmax(A[n,:,:]), A[n,:,:].shape)

在这里,我们将有:

A: 
[[[ 0  1]
  [ 2  3]]

 [[ 4  5]
  [ 6  7]]

 [[ 8  9]
  [10 11]]

 [[ 0 -1]
  [-2 -3]]]

maxpos:
[[ 1.  1.]
 [ 1.  1.]
 [ 1.  1.]
 [ 0.  0.]]

如果有多个最大化器,我不介意选择哪个。

我试过np.apply_over_axes,但没能return达到我想要的结果。

你可以这样做 -

# Reshape input array to a 2D array with rows being kept as with original array.
# Then, get idnices of max values along the columns.
max_idx = A.reshape(A.shape[0],-1).argmax(1)

# Get unravel indices corresponding to original shape of A
maxpos_vect = np.column_stack(np.unravel_index(max_idx, A[0,:,:].shape))

示例 运行 -

In [214]: # Input array
     ...: A = np.random.rand(5,4,3,7,8)

In [215]: # Setup output array and use original loopy code
     ...: maxpos=np.empty(shape=(5,4)) # 4 because ndims in A is 5
     ...: for n in range(0, 5):
     ...:     maxpos[n,:]=np.unravel_index(np.argmax(A[n,:,:,:,:]), A[n,:,:,:,:].shape)
     ...:     

In [216]: # Proposed approach
     ...: max_idx = A.reshape(A.shape[0],-1).argmax(1)
     ...: maxpos_vect = np.column_stack(np.unravel_index(max_idx, A[0,:,:].shape))
     ...: 

In [219]: # Verify results
     ...: np.array_equal(maxpos.astype(int),maxpos_vect)
Out[219]: True

推广到 n 维数组

我们可以概括求解 n-dim 数组以获得最后 N 轴的 argmax 结合这样的东西 -

def argmax_lastNaxes(A, N):
    s = A.shape
    new_shp = s[:-N] + (np.prod(s[-N:]),)
    max_idx = A.reshape(new_shp).argmax(-1)
    return np.unravel_index(max_idx, s[-N:])

结果将是索引数组的元组。如果您需要最终输出为数组,我们可以使用 np.stacknp.concatenate.

您可以使用列表理解

result = [np.unravel_index(np.argmax(r), r.shape) for r in a]

IMO 更具可读性,但速度不会比显式循环好多少。

只有在第一个维度实际上是非常大的维度时,主外循环在 Python 中这一事实才有意义。

如果是这种情况(即你有 1000 万个 2x2 矩阵),那么翻转会更快...

# true if 0,0 is not smaller than others
m00 = ((data[:,0,0] >= data[:,1,0]) &
       (data[:,0,0] >= data[:,0,1]) &
       (data[:,0,0] >= data[:,1,1]))

# true if 0,1 is not smaller than others
m01 = ((data[:,0,1] >= data[:,1,0]) &
       (data[:,0,1] >= data[:,0,0]) &
       (data[:,0,1] >= data[:,1,1]))

# true if 1,0 is not smaller than others
m10 = ((data[:,1,0] >= data[:,0,0]) &
       (data[:,1,0] >= data[:,0,1]) &
       (data[:,1,0] >= data[:,1,1]))

# true if 1,1 is not smaller than others
m11 = ((data[:,1,1] >= data[:,1,0]) &
       (data[:,1,1] >= data[:,0,1]) &
       (data[:,1,1] >= data[:,0,0]))

# choose which is max on equality
m01 &= ~m00
m10 &= ~(m00|m01)
m11 &= ~(m00|m01|m10)

# compute result
result = np.zeros((len(data), 2), np.int32)
result[:,1] |= m01|m11
result[:,0] |= m10|m11

在我的机器上,上面的代码大约快 50 倍(对于一百万个 2x2 矩阵)。