R 数据框因子级别
R data frame factor levels
我有这个代码片段:
levels(testing[,c('is_top_rated_listing')])
其中 returns :
NULL
但是这段代码 returns:
levels(testing$is_top_rated_listing)
returns
"0" "1"
不幸的是,我需要使用第一种方法,因为列名是动态变化的。
知道如何使用第一种方法吗?
dput输出:
structure(list(seller_feedback_score = c(321350, 138351, 282470,
1596, 275283, 275283), is_top_rated_listing = structure(c(2L,
1L, 2L, 1L, 2L, 1L), .Label = c("0", "1"), class = "factor"),
seller_is_top_rated_seller = c(1L, 0L, 1L, 0L, 1L, 1L), is_auto_pay = structure(c(2L,
2L, 2L, 2L, 2L, 2L), .Label = c("0", "1"), class = "factor"),
is_returns_accepted = structure(c(2L, 1L, 2L, 2L, 2L, 2L), .Label = c("0",
"1"), class = "factor"), seller_feedback_rating_star = c("RedShooting",
"RedShooting", "RedShooting", "Red", "RedShooting", "RedShooting"
), keywords_title_assoc = c(1, 0.666666666666667, 1, 0.333333333333333,
1, 1), normalized.price_shipping = c(0.0780598804064508,
0.0883814448796398, 0.0780598804064508, 0.0777079296934893,
0.0254380218279135, 0.0777079296934893), seller_feedback_score_rank = c(9504L,
28866L, 19445L, 50280L, 21796L, 21796L), seller_positive_feedback_percent_rank = c(15L,
9L, 10L, 4L, 5L, 5L), item_condition = structure(c(1L, 1L,
1L, 1L, 1L, 1L), .Label = c("New", "New other (see details)"
), class = "factor"), rank = c(9L, 11L, 13L, 21L, 3L, 4L)), .Names = c("seller_feedback_score",
"is_top_rated_listing", "seller_is_top_rated_seller", "is_auto_pay",
"is_returns_accepted", "seller_feedback_rating_star", "keywords_title_assoc",
"normalized.price_shipping", "seller_feedback_score_rank", "seller_positive_feedback_percent_rank",
"item_condition", "rank"), class = c("tbl_df", "data.frame"), row.names = c(NA,
-6L))
答案如下:
levels(testing[,col][[1]])
很高兴回答了我的第一个堆栈问题:-)
我有这个代码片段:
levels(testing[,c('is_top_rated_listing')])
其中 returns :
NULL
但是这段代码 returns:
levels(testing$is_top_rated_listing)
returns
"0" "1"
不幸的是,我需要使用第一种方法,因为列名是动态变化的。 知道如何使用第一种方法吗?
dput输出:
structure(list(seller_feedback_score = c(321350, 138351, 282470,
1596, 275283, 275283), is_top_rated_listing = structure(c(2L,
1L, 2L, 1L, 2L, 1L), .Label = c("0", "1"), class = "factor"),
seller_is_top_rated_seller = c(1L, 0L, 1L, 0L, 1L, 1L), is_auto_pay = structure(c(2L,
2L, 2L, 2L, 2L, 2L), .Label = c("0", "1"), class = "factor"),
is_returns_accepted = structure(c(2L, 1L, 2L, 2L, 2L, 2L), .Label = c("0",
"1"), class = "factor"), seller_feedback_rating_star = c("RedShooting",
"RedShooting", "RedShooting", "Red", "RedShooting", "RedShooting"
), keywords_title_assoc = c(1, 0.666666666666667, 1, 0.333333333333333,
1, 1), normalized.price_shipping = c(0.0780598804064508,
0.0883814448796398, 0.0780598804064508, 0.0777079296934893,
0.0254380218279135, 0.0777079296934893), seller_feedback_score_rank = c(9504L,
28866L, 19445L, 50280L, 21796L, 21796L), seller_positive_feedback_percent_rank = c(15L,
9L, 10L, 4L, 5L, 5L), item_condition = structure(c(1L, 1L,
1L, 1L, 1L, 1L), .Label = c("New", "New other (see details)"
), class = "factor"), rank = c(9L, 11L, 13L, 21L, 3L, 4L)), .Names = c("seller_feedback_score",
"is_top_rated_listing", "seller_is_top_rated_seller", "is_auto_pay",
"is_returns_accepted", "seller_feedback_rating_star", "keywords_title_assoc",
"normalized.price_shipping", "seller_feedback_score_rank", "seller_positive_feedback_percent_rank",
"item_condition", "rank"), class = c("tbl_df", "data.frame"), row.names = c(NA,
-6L))
答案如下:
levels(testing[,col][[1]])
很高兴回答了我的第一个堆栈问题:-)