ValueError: expected ndim=3, found ndim=2 after replacing BatchNormalization
ValueError: expected ndim=3, found ndim=2 after replacing BatchNormalization
我正在 python 3.7.5 中使用 keras 和 TensorFlow 1.13.1
进行编程
我想从下面编码的模型中删除批量归一化层:
from keras import backend as K
from keras.callbacks import *
from keras.layers import *
from keras.models import *
from keras.utils import *
from keras.optimizers import Adadelta, RMSprop, Adam, SGD
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from config import *
def ctc_lambda_func(args):
iy_pred, ilabels, iinput_length, ilabel_length = args
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
iy_pred = iy_pred[:, 2:, :] # no such influence
return K.ctc_batch_cost(ilabels, iy_pred, iinput_length, ilabel_length)
def CRNN_model(is_training=True):
inputShape = Input((width, height, 1), name='input') # base on Tensorflow backend
conv_1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputShape)
conv_2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv_1)
#batchnorm_2 = BatchNormalization()(conv_2)
pool_2 = MaxPooling2D(pool_size=(2, 2))(conv_2)
conv_3 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool_2)
conv_4 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_3)
#batchnorm_4 = BatchNormalization()(conv_4)
pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
conv_5 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool_4)
conv_6 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_5)
pool_5 = MaxPool2D(pool_size=(2, 2))(conv_6)
#batchnorm_6 = BatchNormalization()(conv_6)
#bn_shape = batchnorm_6.get_shape()
#print(bn_shape)
#x_reshape = Reshape(target_shape=(int(bn_shape[1]), int(bn_shape[2] * bn_shape[3])))(batchnorm_6)
#drop_reshape = Dropout(0.25, name='d1')(x_reshape)
fl_1 = Flatten()(pool_5)
fc_1 = Dense(256, activation='relu')(fl_1)
#print(x_reshape.get_shape())
#print(fc_1.get_shape())
bi_LSTM_1 = Bidirectional(LSTM(256, return_sequences=True, kernel_initializer='he_normal'), merge_mode='sum')(fc_1)
bi_LSTM_2 = Bidirectional(LSTM(128, return_sequences=True, kernel_initializer='he_normal'), merge_mode='concat')(bi_LSTM_1)
#drop_rnn = Dropout(0.3, name='d2')(bi_LSTM_2)
fc_2 = Dense(label_classes, kernel_initializer='he_normal', activation='softmax')(bi_LSTM_2)
base_model = Model(inputs=[inputShape], outputs=fc_2)
labels = Input(name='the_labels', shape=[label_len], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([fc_2, labels, input_length, label_length])
if is_training:
return Model(inputs=[inputShape, labels, input_length, label_length], outputs=[loss_out]), base_model
else:
return base_model
但是我得到这个错误:
Traceback (most recent call last):
File "C:/Users/Babak/PycharmProjects/CRNN-OCR/captcha-recognition-master1/captcha-recognition-master/training.py", line 79, in <module>
model, base_model = CRNN_model(is_training=True)
File "C:\Users\Babak\PycharmProjects\CRNN-OCR\captcha-recognition-master1\captcha-recognition-master\model.py", line 51, in CRNN_model
bi_LSTM_1 = Bidirectional(LSTM(256, return_sequences=True, kernel_initializer='he_normal'), merge_mode='sum')(fc_1)
File "C:\Program Files\Python37\lib\site-packages\keras\layers\wrappers.py", line 437, in __call__
return super(Bidirectional, self).__call__(inputs, **kwargs)
File "C:\Program Files\Python37\lib\site-packages\keras\engine\base_layer.py", line 446, in __call__
self.assert_input_compatibility(inputs)
File "C:\Program Files\Python37\lib\site-packages\keras\engine\base_layer.py", line 342, in assert_input_compatibility
str(K.ndim(x)))
ValueError: Input 0 is incompatible with layer bidirectional_1: expected ndim=3, found ndim=2
Process finished with exit code 1
如何删除注释的批量归一化层。我注意到我手动删除了丢弃层。因此,假设删除了 dropout。我毫无问题地删除了丢失层。但是我在删除批量归一化层时遇到问题
根据错误代码,LSTM
层需要 3D 输入张量,但 Dense
仅输出 2D。存在许多可能的修复,但并非所有修复都同样有效:
Conv2D
输出 4D 张量,形状为 (samples, height, width, channels)
LSTM
期望输入形状 (samples, timesteps, channels)
- 因此,您需要以某种方式将
(height, width)
维度转换为 timesteps
在现有研究中,图像数据被展平并按顺序处理 - 然而,channels
保持不变。因此,一种可行的方法是使用 Reshape
生成形状为 (samples, height*width, channels)
的 3D 张量。最后,由于 Dense
无法处理 3D 数据,因此您需要 TimeDistributed
包装器,它将相同的 Dense
权重应用于输入的 dim 1 - 即 timesteps
:
pool_shapes = K.int_shape(pool_5)
fl_1 = Reshape((pool_shapes[1] * pool_shapes[2], pool_shapes[3]))(pool_5)
fc_1 = TimeDistributed(Dense(256, activation='relu'))(fl_1)
最后,return_sequences=True
输出一个 3D 张量,你的输出 Dense
无法处理 - 所以要么使用 return_sequences=False
输出 2D,要么在Dense
.
我正在 python 3.7.5 中使用 keras 和 TensorFlow 1.13.1
进行编程我想从下面编码的模型中删除批量归一化层:
from keras import backend as K
from keras.callbacks import *
from keras.layers import *
from keras.models import *
from keras.utils import *
from keras.optimizers import Adadelta, RMSprop, Adam, SGD
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
from config import *
def ctc_lambda_func(args):
iy_pred, ilabels, iinput_length, ilabel_length = args
# the 2 is critical here since the first couple outputs of the RNN
# tend to be garbage:
iy_pred = iy_pred[:, 2:, :] # no such influence
return K.ctc_batch_cost(ilabels, iy_pred, iinput_length, ilabel_length)
def CRNN_model(is_training=True):
inputShape = Input((width, height, 1), name='input') # base on Tensorflow backend
conv_1 = Conv2D(64, (3, 3), activation='relu', padding='same')(inputShape)
conv_2 = Conv2D(64, (3, 3), activation='relu', padding='same')(conv_1)
#batchnorm_2 = BatchNormalization()(conv_2)
pool_2 = MaxPooling2D(pool_size=(2, 2))(conv_2)
conv_3 = Conv2D(64, (3, 3), activation='relu', padding='same')(pool_2)
conv_4 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_3)
#batchnorm_4 = BatchNormalization()(conv_4)
pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
conv_5 = Conv2D(128, (3, 3), activation='relu', padding='same')(pool_4)
conv_6 = Conv2D(128, (3, 3), activation='relu', padding='same')(conv_5)
pool_5 = MaxPool2D(pool_size=(2, 2))(conv_6)
#batchnorm_6 = BatchNormalization()(conv_6)
#bn_shape = batchnorm_6.get_shape()
#print(bn_shape)
#x_reshape = Reshape(target_shape=(int(bn_shape[1]), int(bn_shape[2] * bn_shape[3])))(batchnorm_6)
#drop_reshape = Dropout(0.25, name='d1')(x_reshape)
fl_1 = Flatten()(pool_5)
fc_1 = Dense(256, activation='relu')(fl_1)
#print(x_reshape.get_shape())
#print(fc_1.get_shape())
bi_LSTM_1 = Bidirectional(LSTM(256, return_sequences=True, kernel_initializer='he_normal'), merge_mode='sum')(fc_1)
bi_LSTM_2 = Bidirectional(LSTM(128, return_sequences=True, kernel_initializer='he_normal'), merge_mode='concat')(bi_LSTM_1)
#drop_rnn = Dropout(0.3, name='d2')(bi_LSTM_2)
fc_2 = Dense(label_classes, kernel_initializer='he_normal', activation='softmax')(bi_LSTM_2)
base_model = Model(inputs=[inputShape], outputs=fc_2)
labels = Input(name='the_labels', shape=[label_len], dtype='float32')
input_length = Input(name='input_length', shape=[1], dtype='int64')
label_length = Input(name='label_length', shape=[1], dtype='int64')
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')([fc_2, labels, input_length, label_length])
if is_training:
return Model(inputs=[inputShape, labels, input_length, label_length], outputs=[loss_out]), base_model
else:
return base_model
但是我得到这个错误:
Traceback (most recent call last):
File "C:/Users/Babak/PycharmProjects/CRNN-OCR/captcha-recognition-master1/captcha-recognition-master/training.py", line 79, in <module>
model, base_model = CRNN_model(is_training=True)
File "C:\Users\Babak\PycharmProjects\CRNN-OCR\captcha-recognition-master1\captcha-recognition-master\model.py", line 51, in CRNN_model
bi_LSTM_1 = Bidirectional(LSTM(256, return_sequences=True, kernel_initializer='he_normal'), merge_mode='sum')(fc_1)
File "C:\Program Files\Python37\lib\site-packages\keras\layers\wrappers.py", line 437, in __call__
return super(Bidirectional, self).__call__(inputs, **kwargs)
File "C:\Program Files\Python37\lib\site-packages\keras\engine\base_layer.py", line 446, in __call__
self.assert_input_compatibility(inputs)
File "C:\Program Files\Python37\lib\site-packages\keras\engine\base_layer.py", line 342, in assert_input_compatibility
str(K.ndim(x)))
ValueError: Input 0 is incompatible with layer bidirectional_1: expected ndim=3, found ndim=2
Process finished with exit code 1
如何删除注释的批量归一化层。我注意到我手动删除了丢弃层。因此,假设删除了 dropout。我毫无问题地删除了丢失层。但是我在删除批量归一化层时遇到问题
根据错误代码,LSTM
层需要 3D 输入张量,但 Dense
仅输出 2D。存在许多可能的修复,但并非所有修复都同样有效:
Conv2D
输出 4D 张量,形状为(samples, height, width, channels)
LSTM
期望输入形状(samples, timesteps, channels)
- 因此,您需要以某种方式将
(height, width)
维度转换为timesteps
在现有研究中,图像数据被展平并按顺序处理 - 然而,channels
保持不变。因此,一种可行的方法是使用 Reshape
生成形状为 (samples, height*width, channels)
的 3D 张量。最后,由于 Dense
无法处理 3D 数据,因此您需要 TimeDistributed
包装器,它将相同的 Dense
权重应用于输入的 dim 1 - 即 timesteps
:
pool_shapes = K.int_shape(pool_5)
fl_1 = Reshape((pool_shapes[1] * pool_shapes[2], pool_shapes[3]))(pool_5)
fc_1 = TimeDistributed(Dense(256, activation='relu'))(fl_1)
最后,return_sequences=True
输出一个 3D 张量,你的输出 Dense
无法处理 - 所以要么使用 return_sequences=False
输出 2D,要么在Dense
.