由于未知原因,带有异步代码的并行 foreach 循环无法正确完成

Parallel foreach loop with async code doesn't complete correctly for unknown reason

我正在尝试重写一个 foreach 循环以使用 Parallel.ForEach 因为我需要处理的每个文档都可以作为单独的实体处理,因此没有任何依赖关系。

代码相当简单,如下所示:

由于网络 API 调用由于网络延迟是最慢的部分,我想并行处理它们以节省时间所以我写了这段代码

private async Task<List<String>> FetchDocumentsAndBuildList(string brand)
{
    using (var client = new DocumentClient(new Uri(cosmosDBEndpointUrl), cosmosDBPrimaryKey))
    {
        List<string> formattedList = new List<string>();
        FeedOptions queryOptions = new FeedOptions
        {
            MaxItemCount = -1,
            PartitionKey = new PartitionKey(brand)
        };

        var query = client.CreateDocumentQuery<Document>(UriFactory.CreateDocumentCollectionUri(cosmosDBName, cosmosDBCollectionNameRawData), $"SELECT TOP 2 * from c where c.brand = '{brand}'", queryOptions).AsDocumentQuery();

        while(query.HasMoreResults)
        {
            var options = new ParallelOptions { MaxDegreeOfParallelism = Environment.ProcessorCount * 10 };

            Parallel.ForEach(await query.ExecuteNextAsync<Document>(), options, async singleDocument =>
            {
                JObject originalData = singleDocument.GetPropertyValue<JObject>("BasicData");

                if (originalData != null)
                {
                    var artNo = originalData.GetValue("artno");
                    if (artNo != null)
                    {
                        string strArtNo = artNo.ToString();
                        string productNumber = strArtNo.Substring(0, 7);
                        string colorNumber = strArtNo.Substring(7, 3);
                        string HmGoeUrl = $"https://xxx,xom/Online/{strArtNo}/en";
                        string sisApiUrl = $"https:/yyy.com/{productNumber}/{colorNumber}?&maxnumberofstores=10&brand=000&channel=02";
                        string HttpFetchMethod = "GET";

                        JObject detailedDataResponse = await DataFetcherAsync(HmGoeUrl, HttpFetchMethod);
                        JObject inventoryData = await DataFetcherAsync(sisApiUrl, HttpFetchMethod);

                        if (detailedDataResponse != null)
                        {
                            JObject productList = (JObject)detailedDataResponse["product"];

                            if (productList != null)
                            {
                                var selectedIndex = productList["articlesList"].Select((x, index) => new { code = x.Value<string>("code"), Node = x, Index = index })
                                .Single(x => x.code == strArtNo)
                                .Index;

                                detailedDataResponse = (JObject)productList["articlesList"][selectedIndex];
                            }
                        }

                        singleDocument.SetPropertyValue("DetailedData", detailedDataResponse);
                        singleDocument.SetPropertyValue("InventoryData", inventoryData);
                        singleDocument.SetPropertyValue("consumer", "NWS");
                    }
                }
                formattedList.Add(Newtonsoft.Json.JsonConvert.SerializeObject(singleDocument));
            });


            //foreach (Document singleDocument in await query.ExecuteNextAsync<Document>())
            //{
            //    JObject originalData = singleDocument.GetPropertyValue<JObject>("BasicData");

            //    if(originalData != null)
            //    {
            //        var artNo = originalData.GetValue("artno");
            //        if(artNo != null)
            //        {
            //            string strArtNo = artNo.ToString();
            //            string productNumber = strArtNo.Substring(0, 7);
            //            string colorNumber = strArtNo.Substring(7, 3);
            //            string HmGoeUrl = $"https:/xxx.xom/Online/{strArtNo}/en";
            //            string sisApiUrl = $"https://yyy.xom&maxnumberofstores=10&brand=000&channel=02";
            //            string HttpFetchMethod = "GET";

            //            JObject detailedDataResponse = await DataFetcherAsync(HmGoeUrl, HttpFetchMethod);
            //            JObject inventoryData = await DataFetcherAsync(sisApiUrl, HttpFetchMethod);

            //            if(detailedDataResponse != null)
            //            {
            //                JObject productList = (JObject)detailedDataResponse["product"];

            //                if(productList != null)
            //                {
            //                    var selectedIndex = productList["articlesList"].Select((x, index) => new { code = x.Value<string>("code"), Node = x, Index = index })
            //                    .Single(x => x.code == strArtNo)
            //                    .Index;

            //                    detailedDataResponse = (JObject)productList["articlesList"][selectedIndex];
            //                }
            //            }

            //            singleDocument.SetPropertyValue("DetailedData", detailedDataResponse);
            //            singleDocument.SetPropertyValue("InventoryData", inventoryData);
            //            singleDocument.SetPropertyValue("consumer", "NWS");
            //        }
            //    }
            //    formattedList.Add(Newtonsoft.Json.JsonConvert.SerializeObject(singleDocument));
            //}
        }
        return formattedList;
    }
}

如果我在循环中添加断点,我可以看到为每个变量分配了正确的值,但由于某种原因,返回的 formattedList 始终为 0 个条目,我无法弄清楚原因。

被注释掉的是原始的 foreach 循环,它工作得很好但是很慢

--- 编辑 --- 这就是我从父方法调用此代码的方式

   log.LogInformation($"Starting creation of DocumentList for BulkImport at: {DateTime.Now}");

   var documentsToImportInBatch = await FetchDocumentsAndBuildList(brand);

   log.LogInformation($"BulkExecutor DocumentList has: {documentsToImportInBatch.Count} entries, created at: {DateTime.Now}");

这里的问题是 Parallel.ForEach 不明白每次调用返回 Task 的 lambda 都需要等待 ForEach 才能被视为完成。

因此,在您的函数退出之前不会调用 await 之后的延续,这就是为什么 formattedList 中有零个元素。

您可以使用代码示例轻松证明这一点,例如:

Parallel.ForEach(Enumerable.Range(0, 100), async singleDocument => await Task.Delay(9999));
Console.WriteLine("Done!");

Done 几乎会立即打印出来。

对于 I/O 绑定并行性,您可以改用 Task.WhenAll 来并行化您的异步网络抓取调用

var myDocuments = await query.ExecuteNextAsync<Document>();
var myScrapingTasks = myDocuments.Select(async singleDocument =>
{
       // ... all of your web scraping code here
       // return the amended (mutated) document
       return JsonConvert.SerializeObject(singleDocument);
});
var results = await Task.WhenAll(myScrapingTasks);
formattedList.AddRange(results);

w.r.t MaxDegreeOfParallelism,如果您发现需要限制并发抓取调用的数量,最简单的方法是 group the incoming documents into manageable chunks 并一次处理较小的块 - Select(x, i) 过载和 GroupBy 创造奇迹。