如何对 R 中的预测数据应用 wilcox 检验?

How to apply wilcox test on the predicted data in R?

当我们有一个数据文件时,我们使用以下代码进行 k 折交叉验证训练数据,

set.seed(308)

rand_search <- train(
    Effort ~ ., data = d,
    method = "svmRadial",
    ##Create 20 random parameter values
    tuneLength = 20,
    metric = "RMSE",
    preProc = c("center", "scale"),
    trControl = rand_ctrl
) 
  model1 <- predict(rand_search, newdata = test1)

And another search algorithm like grid
grid_search <- train(
    Effort ~ ., data = d,
    method = "svmRadial",
    ##Create 20 random parameter values
    tuneLength = 20,
    metric = "RMSE",
    preProc = c("center", "scale"),
    trControl = rand_ctrl
) 
model2 <- predict(grid_search, newdata = test1)

我的问题是如果我们必须找到显着性检验(wilcox检验),我们如何应用它?我们是否需要像下面那样将模式 1 和模式 2 传递给 wilcox 测试?

wilcox.test(模型 1,模型 2)

trainControl中不需要指定数据。在 train 函数中,您必须提及

之类的数据
#Model training
set.seed(308) 
rand_search <- train(Effort ~ ., data = train1 ,
                                method = "svmRadial",
                                ## Create 20 random parameter values
                                tuneLength = 20,
                                metric = "RMSE",
                                preProc = c("center", "scale"),
                                trControl = rand_ctrl)

并且 test1 应该用于预测目的,例如

#For calibration
models_cal <- predict(rand_search, newdata = train1)
#For independent validation
models_val <- predict(rand_search, newdata = test1)