R如何根据现有数据创建columns/features

R how to create columns/features based on existing data

我有一个数据框 df:

userID Score  Task_Alpha Task_Beta Task_Charlie Task_Delta 
3108  -8.00   Easy       Easy      Easy         Easy    
3207   3.00   Hard       Easy      Match        Match
3350   5.78   Hard       Easy      Hard         Hard
3961   10.00  Easy       NA        Hard         Hard
4021   10.00  Easy       Easy      NA           Hard


1. userID is factor variable
2. Score is numeric
3. All the 'Task_' features are factor variables with possible values 'Hard', 'Easy', 'Match' or NA

我想为每个 userID 创建新列,其中包含 Task_ 特征的每个可能状态的出现次数。对于上面的玩具示例,所需的输出将是要附加在 df 末尾的三个新列,如下所示:

userID Hard Match Easy
3108   0    0     4
3207   1    2     1
3350   3    0     1
3961   2    0     1
4021   1    0     2

更新: 这个问题不是重复的,原始问题的相关部分已移至: R How to counting the factors in ordered sequence

library(data.table)
DT <- fread("userID Score  Task_Alpha Task_Beta Task_Charlie Task_Delta 
3108  -8.00   Easy       Easy      Easy         Easy    
3207   3.00   Hard       Easy      Match        Match
3350   5.78   Hard       Easy      Hard         Hard
3961   10.00  Easy       NA        Hard         Hard
4021   10.00  Easy       Easy      NA           Hard
")

DT.melt <- melt( DT, id.vars = "userID", measure.vars = patterns( task = "^Task_") )
dcast( DT.melt, userID ~ value, fun.aggregate = length )

#    userID NA Easy Hard Match
# 1:   3108  0    4    0     0
# 2:   3207  0    1    1     2
# 3:   3350  0    1    3     0
# 4:   3961  1    1    2     0
# 5:   4021  1    2    1     0

第一部分的答案可以通过使用 apply 逐行获得,并使用 table

计算每行中因子水平的出现次数
cbind(df[1], t(apply(df[-c(1, 2)], 1, function(x) 
           table(factor(x, levels = c("Easy", "Hard", "Match"))))))


#  userID Easy Hard Match
#1   3108    4    0     0
#2   3207    1    1     2
#3   3350    1    3     0
#4   3961    1    2     0
#5   4021    2    1     0

tidyverse中,我们可以将数据转换为长格式,删除NA值,count出现userIDvalue并得到数据恢复为宽格式。

library(dplyr)
library(tidyr)

df %>%
  pivot_longer(cols = starts_with("Task"), values_drop_na = TRUE) %>%
  count(userID, value) %>%
  pivot_wider(names_from = value, values_from = n, values_fill = list(n = 0))

数据

df <- structure(list(userID = c(3108L, 3207L, 3350L, 3961L, 4021L), 
Score = c(-8, 3, 5.78, 10, 10), Task_Alpha = structure(c(1L, 
2L, 2L, 1L, 1L), .Label = c("Easy", "Hard"), class = "factor"), 
Task_Beta = structure(c(1L, 1L, 1L, NA, 1L), .Label = "Easy", class = "factor"), 
Task_Charlie = structure(c(1L, 3L, 2L, 2L, NA), .Label = c("Easy", 
"Hard", "Match"), class = "factor"), Task_Delta = structure(c(1L, 
3L, 2L, 2L, 2L), .Label = c("Easy", "Hard", "Match"), class = "factor")), 
class = "data.frame", row.names = c(NA, -5L))

您可以将数据帧 dfmap**apply 函数中的每个值进行比较,计算结果布尔矩阵的逐行总和,然后将输出与原始数据框:

library(dplyr)
library(purrr)

facs <- c("Easy", "Match", "Hard")

bind_cols(df, set_names(map_dfc(facs, ~ rowSums(df == ., na.rm = T)), facs))

#### OUTPUT ####

  userID Score Task_Alpha Task_Beta Task_Charlie Task_Delta Easy Match Hard
1   3108 -8.00       Easy      Easy         Easy       Easy    4     0    0
2   3207  3.00       Hard      Easy        Match      Match    1     2    1
3   3350  5.78       Hard      Easy         Hard       Hard    1     0    3
4   3961 10.00       Easy      <NA>         Hard       Hard    1     0    2
5   4021 10.00       Easy      Easy         <NA>       Hard    2     0    1

另一个选项使用 Rfast::rowTabulate

v <- c('Hard', 'Match', 'Easy', NA)
DT[, (v) := as.data.table(Rfast::rowTabulate(matrix(match(as.matrix(.SD), v), nrow=.N))), 
    .SDcols=Task_Alpha:Task_Delta]

输出:

   userID Score Task_Alpha Task_Beta Task_Charlie Task_Delta Hard Match Easy NA
1:   3108 -8.00       Easy      Easy         Easy       Easy    0     0    4  0
2:   3207  3.00       Hard      Easy        Match      Match    1     2    1  0
3:   3350  5.78       Hard      Easy         Hard       Hard    3     0    1  0
4:   3961 10.00       Easy      <NA>         Hard       Hard    2     0    1  1
5:   4021 10.00       Easy      Easy         <NA>       Hard    1     0    2  1

来自 Wimpel 的数据:

library(data.table)
DT <- fread("userID Score  Task_Alpha Task_Beta Task_Charlie Task_Delta 
    3108  -8.00   Easy       Easy      Easy         Easy    
    3207   3.00   Hard       Easy      Match        Match
    3350   5.78   Hard       Easy      Hard         Hard
    3961   10.00  Easy       NA        Hard         Hard
    4021   10.00  Easy       Easy      NA           Hard
    ")

想知道这种方法在实际数据集上的工作速度有多快以及实际数据集是否很大。


编辑:添加时间

library(data.table)
set.seed(0L)
nr <- 1e6
v <- c('Hard', 'Match', 'Easy', NA)
DT <- data.table(userID=1:nr, Task_Alpha=sample(v, nr, TRUE),
    Task_Beta=sample(v, nr, TRUE), Task_Charlie=sample(v, nr, TRUE),
    Task_Delta=sample(v, nr, TRUE))
df <- as.data.frame(DT)

mtd0 <- function() {
    t(apply(df[-1L], 1L, function(x)
        table(factor(x, levels = c("Easy", "Hard", "Match")))))
}

mtd1 <- function() {
    DT.melt <- melt( DT, id.vars = "userID", measure.vars = patterns( task = "^Task_") )
    dcast( DT.melt, userID ~ value, fun.aggregate = length )
}

mtd2 <- function() {
    DT[, Rfast::rowTabulate(matrix(match(as.matrix(.SD), v), nrow=.N)),
        .SDcols=Task_Alpha:Task_Delta]
}

bench::mark(mtd0(), mtd1(), mtd2(), check=FALSE)

时间:

# A tibble: 3 x 13
  expression      min   median `itr/sec` mem_alloc `gc/sec` n_itr  n_gc total_time result                    memory                 time     gc              
  <bch:expr> <bch:tm> <bch:tm>     <dbl> <bch:byt>    <dbl> <int> <dbl>   <bch:tm> <list>                    <list>                 <list>   <list>          
1 mtd0()        54.7s    54.7s    0.0183     137MB    1.70      1    93      54.7s <int[,3] [1,000,000 x 3]> <df[,3] [107,168 x 3]> <bch:tm> <tibble [1 x 3]>
2 mtd1()         2.4s     2.4s    0.417      398MB    0.833     1     2       2.4s <df[,5] [1,000,000 x 5]>  <df[,3] [12,517 x 3]>  <bch:tm> <tibble [1 x 3]>
3 mtd2()      252.8ms  264.4ms    3.78       107MB    3.78      2     2    528.7ms <int[,4] [1,000,000 x 4]> <df[,3] [6,509 x 3]>   <bch:tm> <tibble [2 x 3]>

如果您正在使用 base R,那么以下内容可能对您有所帮助:

df <- cbind(df,as.data.frame(sapply(c('Hard','Match','Easy'), function(v) rowSums(df == v, na.rm = T))))

输出:

> df
  userID Score Task_Alpha Task_Beta Task_Charlie Task_Delta Hard Match Easy
1   3108 -8.00       Easy      Easy         Easy       Easy    0     0    4
2   3207  3.00       Hard      Easy        Match      Match    1     2    1
3   3350  5.78       Hard      Easy         Hard       Hard    3     0    1
4   3961 10.00       Easy      <NA>         Hard       Hard    2     0    1
5   4021 10.00       Easy      Easy         <NA>       Hard    1     0    2