如何在 Keras 中为 AlexNet 训练之前加载 imagenet 权重?

How to load imagenet weights before Training in Keras for AlexNet?

您好,我使用顺序方法在 keras 中编写了 AlexNet。我想知道是否以及如何加载 imagenet 权重来训练模型?

目前我正在为每一层使用 randomNormal 内核初始化。但我想使用 imagenet 权重进行训练。我有一个 H5 文件的权重。有人也可以提供示例代码吗?

由于您在 keras 中编写了 AlexNet,并且您的权重作为 H5 文件,您可以将权重从 h5 文件恢复到您的 Keras 模型。

model.load_weights('my_model_weights.h5')
model = Sequential()

# 1st Convolutional Layer
model.add(Conv2D(filters=96, input_shape=(224,224,3), kernel_size=(11,11), strides=(4,4), padding=’valid’))
model.add(Activation(‘relu’))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding=’valid’))

# 2nd Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1), padding=’valid’))
model.add(Activation(‘relu’))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding=’valid’))

# 3rd Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding=’valid’))
model.add(Activation(‘relu’))

# 4th Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding=’valid’))
model.add(Activation(‘relu’))

# 5th Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding=’valid’))
model.add(Activation(‘relu’))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding=’valid’))

# Passing it to a Fully Connected layer
model.add(Flatten())
# 1st Fully Connected Layer
model.add(Dense(4096, input_shape=(224*224*3,)))
model.add(Activation(‘relu’))
# Add Dropout to prevent overfitting
model.add(Dropout(0.4))

# 2nd Fully Connected Layer
model.add(Dense(4096))
model.add(Activation(‘relu’))
# Add Dropout
model.add(Dropout(0.4))

# 3rd Fully Connected Layer
model.add(Dense(1000))
model.add(Activation(‘relu’))
# Add Dropout
model.add(Dropout(0.4))

# Output Layer
model.add(Dense(17))
model.add(Activation(‘softmax’))

model.summary()

# Compile the model
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=’adam’, metrics=[“accuracy”])

model.load_weights('weight.h5')