为从同一数据框中提取的变量向数据框中添加新记录

Adding new records to a dataframe for variables extracted from the same dataframe

我正在尝试合并数据集中的变量。 我有这样的东西:

import pandas as pd
import numpy as np


data = np.array([[160,90,'skirt_trousers', 'tight_comfy'],[180,100,'trousers_skirt', 'long_short']])
dford = pd.DataFrame(data, columns = ['height','size','order', 'preference'])

我正在努力让它变成这样:

dataForTarget = np.array([['o1',160,90,'skirt', 'tight'],['o2', 180,100,'trousers', 'long'],['o1',160,90,'trousers', 'comfy'],['o2', 180,100,'skirt', 'short']])
Targetdford = pd.DataFrame(dataForTarget, columns = ['orderID','height','size','order', 'preference'])

作为第一步,我从字符串中提取了尽可能多的数据, 然后清理它们:

variables = dford.columns.tolist()
variables.append('ord1')
secondord = dford.order.str.extractall (r'_(.*)')
secondord = secondord.unstack()
secondord.columns = secondord.columns.droplevel()
dford1 = dford.join(secondord)
dford1. columns = variables
dford1.order = dford1.order.str.replace(r'(_.*)','')


variables = dford1.columns.tolist()
variables.append('pref1')
secondpref = dford.preference.str.extractall (r'_(.*)')
secondpref = secondpref.unstack()
secondpref.columns = secondpref.columns.droplevel()
dford2 = dford1.join(secondpref)
dford2. columns = variables
dford2.order = dford2.order.str.replace(r'(_.*)','')

这让我来到这里:

在这个阶段,我不知道如何将这些新信息添加为观察结果(按行)。

我能想出的最好办法如下,但失败了,因为索引包含 重复条目。但即使它没有失败,我怀疑它会 仅在我尝试填写缺失值时才有用。

但是我一无所获。

dford3 = dford2.rename(columns = {'ord1': 'order', 'pref1': 'preference'})
dford3= dford3.stack()
dford3= dford3.unstack()

使用Series.str.split with DataFrame.stack and concat for new DataFrame and add to original by DataFrame.join:

df = pd.concat([dford.pop('order').str.split('_', expand=True).stack().rename('order'), 
                dford.pop('preference').str.split('_', expand=True).stack().rename('preference')], axis=1)


dford = (dford.join(df.reset_index(level=1)).rename_axis('orderID')
              .reset_index()
              .sort_values(['level_1','orderID'])
              .drop('level_1', 1)
              .reset_index(drop=True)
              .assign(orderID = lambda x: 'o' + x['orderID'].add(1).astype('str')))

print (dford)
  orderID height size     order preference
0      o1    160   90     skirt      tight
1      o2    180  100  trousers       long
2      o1    160   90  trousers      comfy
3      o2    180  100     skirt      short

使用DataFrame.apply + Series.str.split。 将生成的数据帧与 pd.concat and use Series.map 连接起来以创建 HightSize 系列:

df=pd.concat([df.T for df in dford[['order','preference']].apply(lambda x: x.str.split('_',expand=True),axis=1)]).rename_axis(index='OrderID').reset_index() 

df['height']=df['OrderID'].map(dford['height'])
df['size']=df['OrderID'].map(dford['size'])
print(df)

   OrderID     order preference height size
0        0     skirt      tight    160   90
1        1  trousers      comfy    180  100
2        0  trousers       long    160   90
3        1     skirt      short    180  100

最后在OrderID列加一,加上字符o

df['OrderID']='o'+df['OrderID'].add(1).astype('str')
print(df)

  OrderID     order preference height size
0      o1     skirt      tight    160   90
1      o2  trousers      comfy    180  100
2      o1  trousers       long    160   90
3      o2     skirt      short    180  100