如何在 TensorFlow moments 中设置 axes 参数以进行批量归一化?
How do you set the axes parameter in TensorFlow moments for batch normalization?
我计划实施类似于 this blog (or just using tf.nn.batch_normalization
) using tf.nn.moments
的批量归一化函数来计算均值和方差,但我希望对向量和图像类型的时间数据执行此操作。我通常很难理解如何在 tf.nn.moments
.
中正确设置 axes
参数
我的矢量序列输入数据的形状为 (batch, timesteps, channels)
,图像序列的输入数据的形状为 (batch, timesteps, height, width, 3)
(注意它们是 RGB 图像)。在这两种情况下,我都希望跨时间步跨整个批次 和 进行标准化,这意味着我 而不是 试图保持单独的 mean/variance对于不同的时间步长。
如何为不同的数据类型(例如图像、矢量)和 temporal/non-temporal 正确设置 axes
?
最简单的思考方式是 - 传递到 axes
的轴将 折叠,统计数据将通过 切片计算 axes
。示例:
import tensorflow as tf
x = tf.random.uniform((8, 10, 4))
print(x, '\n')
print(tf.nn.moments(x, axes=[0]), '\n')
print(tf.nn.moments(x, axes=[0, 1]))
Tensor("random_uniform:0", shape=(8, 10, 4), dtype=float32)
(<tf.Tensor 'moments/Squeeze:0' shape=(10, 4) dtype=float32>,
<tf.Tensor 'moments/Squeeze_1:0' shape=(10, 4) dtype=float32>)
(<tf.Tensor 'moments_1/Squeeze:0' shape=(4,) dtype=float32>,
<tf.Tensor 'moments_1/Squeeze_1:0' shape=(4,) dtype=float32>)
从源代码中,math_ops.reduce_mean
用于计算 mean
和 variance
,其在伪代码中的运行方式为:
# axes = [0]
mean = (x[0, :, :] + x[1, :, :] + ... + x[7, :, :]) / 8
mean.shape == (10, 4) # each slice's shape is (10, 4), so sum's shape is also (10, 4)
# axes = [0, 1]
mean = (x[0, 0, :] + x[1, 0, :] + ... + x[7, 0, :] +
x[0, 1, :] + x[1, 1, :] + ... + x[7, 1, :] +
... +
x[0, 10, :] + x[1, 10, :] + ... + x[7, 10, :]) / (8 * 10)
mean.shape == (4, ) # each slice's shape is (4, ), so sum's shape is also (4, )
换句话说,axes=[0]
将计算 (timesteps, channels)
关于 samples
的统计数据 - 即迭代 samples
,计算 (timesteps, channels)
的均值和方差切片。因此,对于
normalization to happen across the entire batch and across timesteps, meaning I am not trying to maintain separate mean/variance for different timesteps
您只需折叠 timesteps
维度(沿着 samples
),并通过迭代 samples
和 timesteps
:
来计算统计数据
axes = [0, 1]
图像也是如此,除了你有两个 non-channel/sample 维度,你会做 axes = [0, 1, 2]
(折叠 samples, height, width
)。
伪代码演示:查看实际计算均值
import tensorflow as tf
import tensorflow.keras.backend as K
import numpy as np
x = tf.constant(np.random.randn(8, 10, 4))
result1 = tf.add(x[0], tf.add(x[1], tf.add(x[2], tf.add(x[3], tf.add(x[4],
tf.add(x[5], tf.add(x[6], x[7]))))))) / 8
result2 = tf.reduce_mean(x, axis=0)
print(K.eval(result1 - result2))
# small differences per numeric imprecision
[[ 2.77555756e-17 0.00000000e+00 -5.55111512e-17 -1.38777878e-17]
[-2.77555756e-17 2.77555756e-17 0.00000000e+00 -1.38777878e-17]
[ 0.00000000e+00 -5.55111512e-17 0.00000000e+00 -2.77555756e-17]
[-1.11022302e-16 2.08166817e-17 2.22044605e-16 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[-5.55111512e-17 2.77555756e-17 -1.11022302e-16 5.55111512e-17]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.77555756e-17]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 -5.55111512e-17]
[ 0.00000000e+00 -3.46944695e-17 -2.77555756e-17 1.11022302e-16]
[-5.55111512e-17 5.55111512e-17 0.00000000e+00 1.11022302e-16]]
我计划实施类似于 this blog (or just using tf.nn.batch_normalization
) using tf.nn.moments
的批量归一化函数来计算均值和方差,但我希望对向量和图像类型的时间数据执行此操作。我通常很难理解如何在 tf.nn.moments
.
axes
参数
我的矢量序列输入数据的形状为 (batch, timesteps, channels)
,图像序列的输入数据的形状为 (batch, timesteps, height, width, 3)
(注意它们是 RGB 图像)。在这两种情况下,我都希望跨时间步跨整个批次 和 进行标准化,这意味着我 而不是 试图保持单独的 mean/variance对于不同的时间步长。
如何为不同的数据类型(例如图像、矢量)和 temporal/non-temporal 正确设置 axes
?
最简单的思考方式是 - 传递到 axes
的轴将 折叠,统计数据将通过 切片计算 axes
。示例:
import tensorflow as tf
x = tf.random.uniform((8, 10, 4))
print(x, '\n')
print(tf.nn.moments(x, axes=[0]), '\n')
print(tf.nn.moments(x, axes=[0, 1]))
Tensor("random_uniform:0", shape=(8, 10, 4), dtype=float32)
(<tf.Tensor 'moments/Squeeze:0' shape=(10, 4) dtype=float32>,
<tf.Tensor 'moments/Squeeze_1:0' shape=(10, 4) dtype=float32>)
(<tf.Tensor 'moments_1/Squeeze:0' shape=(4,) dtype=float32>,
<tf.Tensor 'moments_1/Squeeze_1:0' shape=(4,) dtype=float32>)
从源代码中,math_ops.reduce_mean
用于计算 mean
和 variance
,其在伪代码中的运行方式为:
# axes = [0]
mean = (x[0, :, :] + x[1, :, :] + ... + x[7, :, :]) / 8
mean.shape == (10, 4) # each slice's shape is (10, 4), so sum's shape is also (10, 4)
# axes = [0, 1]
mean = (x[0, 0, :] + x[1, 0, :] + ... + x[7, 0, :] +
x[0, 1, :] + x[1, 1, :] + ... + x[7, 1, :] +
... +
x[0, 10, :] + x[1, 10, :] + ... + x[7, 10, :]) / (8 * 10)
mean.shape == (4, ) # each slice's shape is (4, ), so sum's shape is also (4, )
换句话说,axes=[0]
将计算 (timesteps, channels)
关于 samples
的统计数据 - 即迭代 samples
,计算 (timesteps, channels)
的均值和方差切片。因此,对于
normalization to happen across the entire batch and across timesteps, meaning I am not trying to maintain separate mean/variance for different timesteps
您只需折叠 timesteps
维度(沿着 samples
),并通过迭代 samples
和 timesteps
:
axes = [0, 1]
图像也是如此,除了你有两个 non-channel/sample 维度,你会做 axes = [0, 1, 2]
(折叠 samples, height, width
)。
伪代码演示:查看实际计算均值
import tensorflow as tf
import tensorflow.keras.backend as K
import numpy as np
x = tf.constant(np.random.randn(8, 10, 4))
result1 = tf.add(x[0], tf.add(x[1], tf.add(x[2], tf.add(x[3], tf.add(x[4],
tf.add(x[5], tf.add(x[6], x[7]))))))) / 8
result2 = tf.reduce_mean(x, axis=0)
print(K.eval(result1 - result2))
# small differences per numeric imprecision
[[ 2.77555756e-17 0.00000000e+00 -5.55111512e-17 -1.38777878e-17]
[-2.77555756e-17 2.77555756e-17 0.00000000e+00 -1.38777878e-17]
[ 0.00000000e+00 -5.55111512e-17 0.00000000e+00 -2.77555756e-17]
[-1.11022302e-16 2.08166817e-17 2.22044605e-16 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[-5.55111512e-17 2.77555756e-17 -1.11022302e-16 5.55111512e-17]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 -2.77555756e-17]
[ 0.00000000e+00 0.00000000e+00 0.00000000e+00 -5.55111512e-17]
[ 0.00000000e+00 -3.46944695e-17 -2.77555756e-17 1.11022302e-16]
[-5.55111512e-17 5.55111512e-17 0.00000000e+00 1.11022302e-16]]