如何在多个内核中使用 Eigen::Tensor::convolve?

How to use Eigen::Tensor::convolve with multiple kernels?

将形状为 (3, 20, 30) 的输入张量(通道优先表示法)与形状为 (3, 5, 7)8 滤波器进行卷积应该得到形状为 (8, 24, 16) 的张量。我正在尝试使用 Eigen::Tensor::convolve 来实现它,但结果形状是 (1, 24, 16)。所以似乎只应用了一个过滤器而不是所有 8.

这是一个最小的例子:

#include <cassert>
#include <iostream>
#include <eigen3/unsupported/Eigen/CXX11/Tensor>

int main() {
    int input_height = 20;
    int input_width = 30;
    int input_channels = 3;

    int kernels_height = 5;
    int kernels_width = 7;
    int kernels_channels = 3;
    int kernel_count = 8;

    assert(kernels_channels == input_channels);

    int expected_output_height = input_height + 1 - kernels_height;
    int expected_output_width = input_width + 1 - kernels_width;
    int expected_output_channels = kernel_count;

    Eigen::Tensor<float, 3> input(input_channels, input_width, input_height);
    Eigen::Tensor<float, 4> filters(kernels_channels, kernels_width, kernels_height, kernel_count);

    Eigen::array<ptrdiff_t, 3> dims({0, 1, 2});
    Eigen::Tensor<float, 3> output = input.convolve(filters, dims);

    const Eigen::Tensor<float, 3>::Dimensions& d = output.dimensions();

    std::cout << "Expected output shape: (" << expected_output_channels << ", " << expected_output_width << ", " << expected_output_height << ")" << std::endl;
    std::cout << "Actual shape: (" << d[0] << ", " << d[1] << ", " << d[2] << ")" << std::endl;
}

及其输出:

Expected output shape: (8, 24, 16)
Actual shape: (1, 24, 16)

当然可以 iterate over the filters one by one and call .convolve for each one 但是这个

所以我想我在使用 Eigen 库时做错了什么。如何正确完成?

不支持同时与多个内核进行卷积(docs):

The dimension size for dimensions of the output tensor which were part of the convolution will be reduced by the formula: output_dim_size = input_dim_size - kernel_dim_size + 1 (requires: input_dim_size >= kernel_dim_size). The dimension sizes for dimensions that were not part of the convolution will remain the same.

根据上面 expected_output_channels 应该等于 1 = 3 - 3 + 1

我觉得应该不可能如你所愿,因为卷积运算是一个数学运算,而且定义明确,所以不遵循数学定义才奇怪。

未测试解决方案

我没有检查,但我相信下一段代码会产生您希望的输出:

Eigen::Tensor<float, 3> input(input_channels, input_width, input_height);
Eigen::Tensor<float, 4> filters(kernels_channels, kernels_width, kernels_height, kernel_count);
Eigen::Tensor<float, 3> output(kernel_count, expected_output_width, expected_output_height);

Eigen::array<ptrdiff_t, 3> dims({0, 1, 2});

for (int i = 0; i < kernel_count; ++i){
    output.chip(i, 0) = input.convolve(filters.chip(i, 3), dims).chip(0, 0);
}

如你所见,第一个和第三个问题都不是什么大问题。希望你运气好,这部分代码不会成为你的瓶颈:)