混淆矩阵显示具有切断的值
Confusion martix showing the values with cutting off
混淆矩阵显示的是截断值。
skplt.metrics.plot_confusion_matrix(
y_test,
predictions,
figsize=(25, 25),title="Confusion matrix")
plt.show()
cnfudion matix的图片如下:
首先,skplt.metrics.plot_confusion_matrix
不存在。
仅 sklearn.metrics.confusion_matrix
存在。
要绘制混淆矩阵,您需要 sklearn 网站中定义的 plot_confusion_matrix
函数。
要使其适用于您的情况,请在 plot_confusion_matrix
函数中添加以下行:
plt.xlim(-0.5, len(np.unique(y))-0.5)
plt.ylim(len(np.unique(y))-0.5, -0.5)
原码:https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
完整示例:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = np.repeat(np.arange(0,2),75)
class_names = np.array(['1', '2'])
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
plt.xlim(-0.5, len(np.unique(y))-0.5) # ADD THIS LINE
plt.ylim(len(np.unique(y))-0.5, -0.5) # ADD THIS LINE
return ax
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plot_confusion_matrix(y_test, y_pred, classes=class_names,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plot_confusion_matrix(y_test, y_pred, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.show()
你不必在 confmat plot 函数中添加这个。下面的代码应该可以工作:
skplt.metrics.plot_confusion_matrix(
y_test,
predictions,
figsize=(7, 7),title="Confusion matrix")
plt.ylim(-0.5, 4.5)
plt.show()
混淆矩阵显示的是截断值。
skplt.metrics.plot_confusion_matrix(
y_test,
predictions,
figsize=(25, 25),title="Confusion matrix")
plt.show()
cnfudion matix的图片如下:
首先,skplt.metrics.plot_confusion_matrix
不存在。
仅 sklearn.metrics.confusion_matrix
存在。
要绘制混淆矩阵,您需要 sklearn 网站中定义的 plot_confusion_matrix
函数。
要使其适用于您的情况,请在 plot_confusion_matrix
函数中添加以下行:
plt.xlim(-0.5, len(np.unique(y))-0.5)
plt.ylim(len(np.unique(y))-0.5, -0.5)
原码:https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
完整示例:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
# import some data to play with
iris = datasets.load_iris()
X = iris.data
y = np.repeat(np.arange(0,2),75)
class_names = np.array(['1', '2'])
# Split the data into a training set and a test set
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
# Run classifier, using a model that is too regularized (C too low) to see
# the impact on the results
classifier = svm.SVC(kernel='linear', C=0.01)
y_pred = classifier.fit(X_train, y_train).predict(X_test)
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
plt.xlim(-0.5, len(np.unique(y))-0.5) # ADD THIS LINE
plt.ylim(len(np.unique(y))-0.5, -0.5) # ADD THIS LINE
return ax
np.set_printoptions(precision=2)
# Plot non-normalized confusion matrix
plot_confusion_matrix(y_test, y_pred, classes=class_names,
title='Confusion matrix, without normalization')
# Plot normalized confusion matrix
plot_confusion_matrix(y_test, y_pred, classes=class_names, normalize=True,
title='Normalized confusion matrix')
plt.show()
你不必在 confmat plot 函数中添加这个。下面的代码应该可以工作:
skplt.metrics.plot_confusion_matrix(
y_test,
predictions,
figsize=(7, 7),title="Confusion matrix")
plt.ylim(-0.5, 4.5)
plt.show()