为什么 Dask 读取 parquet 文件的速度比 Pandas 读取相同的 parquet 文件慢很多?

Why does Dask read parquet file in a lot slower than Pandas reading same parquet file?

我正在使用 Dask 和 python 测试镶木地板文件的读取速度,我发现使用 pandas 读取同一个文件比 Dask 快得多。我想了解这是为什么,如果有办法获得同等性能,

所有相关包的版本

print(dask.__version__) print(pd.__version__) print(pyarrow.__version__) print(fastparquet.__version__)

2.6.0 0.25.2 0.15.1 0.3.2

import pandas as pd 
import numpy as np
import dask.dataframe as dd

col = [str(i) for i in list(np.arange(40))]
df = pd.DataFrame(np.random.randint(0,100,size=(5000000, 4 * 10)), columns=col)

df.to_parquet('large1.parquet', engine='pyarrow')
 # Wall time: 3.86 s
df.to_parquet('large2.parquet', engine='fastparquet')
 # Wall time: 27.1 s
df = dd.read_parquet('large2.parquet', engine='fastparquet').compute()
 # Wall time: 5.89 s
df = dd.read_parquet('large1.parquet', engine='pyarrow').compute()
 # Wall time: 4.84 s
df = pd.read_parquet('large1.parquet',engine='pyarrow')
 # Wall time: 503 ms 
df = pd.read_parquet('large2.parquet',engine='fastparquet')
 # Wall time: 4.12 s

使用混合数据类型数据框时,差异更大。

dtypes: category(7), datetime64[ns](2), float64(1), int64(1), object(9)
memory usage: 973.2+ MB
# df.shape == (8575745, 20)
df.to_parquet('large1.parquet', engine='pyarrow')
 # Wall time: 9.67 s

df.to_parquet('large2.parquet', engine='fastparquet')
 # Wall time: 33.3 s

# read with Dask
df = dd.read_parquet('large1.parquet', engine='pyarrow').compute()
 # Wall time: 34.5 s

df = dd.read_parquet('large2.parquet', engine='fastparquet').compute()
 # Wall time: 1min 22s

# read with pandas 
df = pd.read_parquet('large1.parquet',engine='pyarrow')
 # Wall time: 8.67 s

df = pd.read_parquet('large2.parquet',engine='fastparquet')
 # Wall time: 21.8 s

我的第一个猜测是 Pandas 将 Parquet 数据集保存到单个行组中,这将不允许像 Dask 这样的系统进行并行化。这并不能解释为什么它变慢,但它确实解释了为什么它不快。

如需更多信息,我建议进行概要分析。您可能对此文档感兴趣: