嵌套对象的 Elasticsearch 聚合
Elasticsearch aggregation by nested object
我正在尝试为电子商务应用程序构建具有分面过滤功能的产品搜索。对于产品品牌,我有以下结构:
"brand": {
"type": "nested",
"properties": {
"name": {
"type": "text"
},
"id": {
"type": "integer"
}
}
}
我想按品牌 ID 和 return 整个对象和文档数进行聚合。像这样:
"brands" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : {
"name": "Apple",
"id": 1
},
"doc_count" : 34
},
{
"key" : {
"name": "Samsung",
"id": 2
},
"doc_count" : 23
}
]
}
目前我正在这样写聚合:
"aggs": {
"brands": {
"nested": {
"path": "brand"
},
"aggs": {
"brandIds": {
"terms": {
"field": "brand.id"
}
}
}
},
}
结果如下所示:
"aggregations" : {
"brands" : {
"doc_count" : 15,
"brandIds" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 1,
"doc_count" : 4
},
{
"key" : 2,
"doc_count" : 2
}
]
}
}
}
您可以像这样在 Terms Aggregation
中使用 Term Aggregation
:
GET {index_name}/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"brands": {
"nested": {
"path": "brand"
},
"aggs": {
"brandIds": {
"terms": {
"field": "brand.id"
},
"aggs": {
"by name": {
"terms": {
"field": "brand.name.keyword",
"size": 10
}
}
}
}
}
}
}
}
这将导致如下结果:
"aggregations": {
"brands": {
"doc_count": 68,
"brandIds": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1,
"doc_count": 46,
"by name": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Apple",
"doc_count": 46
}
]
}
},
{
"key": 2,
"doc_count": 22,
"ny id": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Samsung",
"doc_count": 22
}
]
}
}
]
}
}
}
希望对您有所帮助!!
我正在尝试为电子商务应用程序构建具有分面过滤功能的产品搜索。对于产品品牌,我有以下结构:
"brand": {
"type": "nested",
"properties": {
"name": {
"type": "text"
},
"id": {
"type": "integer"
}
}
}
我想按品牌 ID 和 return 整个对象和文档数进行聚合。像这样:
"brands" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : {
"name": "Apple",
"id": 1
},
"doc_count" : 34
},
{
"key" : {
"name": "Samsung",
"id": 2
},
"doc_count" : 23
}
]
}
目前我正在这样写聚合:
"aggs": {
"brands": {
"nested": {
"path": "brand"
},
"aggs": {
"brandIds": {
"terms": {
"field": "brand.id"
}
}
}
},
}
结果如下所示:
"aggregations" : {
"brands" : {
"doc_count" : 15,
"brandIds" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 1,
"doc_count" : 4
},
{
"key" : 2,
"doc_count" : 2
}
]
}
}
}
您可以像这样在 Terms Aggregation
中使用 Term Aggregation
:
GET {index_name}/_search
{
"size": 0,
"query": {
"match_all": {}
},
"aggs": {
"brands": {
"nested": {
"path": "brand"
},
"aggs": {
"brandIds": {
"terms": {
"field": "brand.id"
},
"aggs": {
"by name": {
"terms": {
"field": "brand.name.keyword",
"size": 10
}
}
}
}
}
}
}
}
这将导致如下结果:
"aggregations": {
"brands": {
"doc_count": 68,
"brandIds": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 1,
"doc_count": 46,
"by name": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Apple",
"doc_count": 46
}
]
}
},
{
"key": 2,
"doc_count": 22,
"ny id": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "Samsung",
"doc_count": 22
}
]
}
}
]
}
}
}
希望对您有所帮助!!