维度输入困难

Dimension Input Keras

我修改了找到的代码 here。但是我的输入出现尺寸错误,如下所示:

ValueError: Error when checking input: expected InputLayer to have 4 dimensions, but got array with shape (None, None)

这是我修改后的代码(我在 Colab 上运行):

#Power data classification/regression with CNN
import numpy as np
import tensorflow as tf
from tensorflow import keras
import pandas as pd
import csv as csv
import keras.backend as K
from sklearn.preprocessing import MinMaxScaler # For normalizing data
print("TensorFlow version:",tf.__version__)

!wget https://raw.githubusercontent.com/sibyjackgrove/CNN-on-Wind-Power-Data/master/MISO_power_data_classification_labels.csv
!wget https://raw.githubusercontent.com/sibyjackgrove/CNN-on-Wind-Power-Data/master/MISO_power_data_input.csv

#Read total rows in csv file without loading into memory
def data_set_size(csv_file):
    with open(csv_file) as csvfile:
        csv_rows = 0
        for _ in csvfile:
            csv_rows += 1
    return csv_rows-1            #Remove header from count and return

csv_file = "./MISO_power_data_classification_labels.csv"
n_train = data_set_size(csv_file)
print("Training data set size:",n_train)

#Python generator to supply batches of traning data during training with loading full data set to memory
def power_data_generator(batch_size,gen_type=''):
    valid_size = max(1,np.int(0.2*batch_size))
    while 1:
        df_input=pd.read_csv('./MISO_power_data_input.csv',usecols =['Wind_MWh','Actual_Load_MWh'],chunksize =24*(batch_size+valid_size), iterator=True)
        df_target=pd.read_csv('./MISO_power_data_classification_labels.csv',usecols =['Mean Wind Power','Standard Deviation','WindShare'],chunksize =batch_size+valid_size, iterator=True)
        for chunk, chunk2 in  zip(df_input,df_target):
            scaler = MinMaxScaler() # Define limits for normalize data
            InputX = chunk.values
            InputX = scaler.fit_transform(InputX) # Normalize input data
            InputY = chunk2.values
            InputY = scaler.fit_transform(InputY) # Normalize output data
            if gen_type =='training':
                yield (InputX[0:batch_size],InputY[0:batch_size])
            elif gen_type =='validation':
                yield (InputX[batch_size:batch_size+valid_size],InputY[batch_size:batch_size+valid_size])

#Define model using Keras
Yclasses = 3 #Number of output classes

def nossa_metrica(y_true, y_pred):
    diff = y_true - y_pred
    count = K.sum(K.cast(K.equal(diff, K.zeros_like(diff)), 'int8')) # Count how many times y_true = y_pred
    return count/n_train

model = keras.Sequential([
    tf.keras.layers.Input(shape=(2,24,1),name='InputLayer'),                    
    tf.keras.layers.Conv2D(filters=4,kernel_size=(2,6),strides=(1,1),activation='relu',name='ConvLayer1'),
    tf.keras.layers.Conv2D(filters=4,kernel_size=(1,6),strides=(1,1),activation='relu',name='ConvLayer2'),
    tf.keras.layers.Flatten(name="Flatten"),
    tf.keras.layers.Dense(units = 8,activation='relu',name='FeedForward1'),
    tf.keras.layers.Dense(units = Yclasses,name='OutputLayer'),
])

model.compile(loss='mse',optimizer='adam',verbose = 2,metrics = [nossa_metrica])
model.summary()

samples_per_batch = 5
train_generator= power_data_generator(batch_size=samples_per_batch,gen_type='training')
valid_generator= power_data_generator(batch_size=samples_per_batch,gen_type='validation')
number_of_batches = np.int32(n_train/(samples_per_batch+max(1,np.int32(0.2*samples_per_batch)))) 
#Training starts
history = model.fit(train_generator, steps_per_epoch= number_of_batches,epochs=200,validation_data=valid_generator, validation_steps=number_of_batches,verbose=2)

如果有人能在这里阐明一些问题,我将不胜感激!

tf.keras.layers.Input(shape=(2,24,1),name='InputLayer')

您指定模型的输入,即传递给 model.fit 的第一个参数应该具有 (?, 2, 24, 1) 的形状,但这不是您传递的内容。实际上,next(train_generator) 会产生以下输出:

(array([[0.62840991, 0.36867201],
        [0.68026787, 0.32275764],
        [0.67140497, 0.30866827],
        [0.61158515, 0.32725069],
        [0.57037451, 0.41795902]]),
 array([[0.0301671 , 1.        , 0.00581285],
        [0.        , 0.18781352, 0.        ],
        [0.12077826, 0.3356642 , 0.19676627],
        [0.56275038, 0.8747475 , 0.69121483],
        [1.        , 0.        , 1.        ]]))

分别是 (5, 2)(5, 3) 形状数组的元组。

在您所指的笔记本中,他们通过

明确设置了所需形状的输入
InputX = np.resize(InputX,(batch_size+valid_size,24,2,1))

但这不是您代码的一部分。