在 R 中读取多个分隔的 .txt 文件,散布 headers
read delimited .txt file with multiple, interspersed headers in R
我正在尝试在 R 中打开和清理一个庞大的海洋学数据集,其中台站信息散布在 headers 观察块之间:
$
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999.0 -9 -9 -9 -9 4868.8 2017 0 7114
2.0 6.0297 35.0199 34.4101 2.0 11111
3.0 6.0279 35.0201 34.4091 3.0 11111
4.0 6.0272 35.0203 34.4091 4.0 11111
5.0 6.0273 35.0204 34.4097 4.9 11111
6.0 6.0274 35.0205 34.4104 5.9 11111
$
2008 1 777 8 17 12 7 25 78.4738 8.3510 27 6 4.1 -999.0 3 7 2 0 4903.8 1570 0 7114
3.0 6.4129 34.5637 34.3541 3.0 11111
4.0 6.4349 34.5748 34.3844 4.0 11111
5.0 6.4803 34.5932 34.4426 4.9 11111
6.0 6.4139 34.5624 34.3552 5.9 11111
7.0 6.5079 34.6097 34.4834 6.9 11111
每个 $
后跟一行包含站数据(例如年、...、纬度、经度、日期、时间),然后是几行包含在该站采样的观测值(例如深度、温度、盐度等)。
我想将站数据添加到观测中,这样每个变量就是一列
每个观察都是一行,如下所示:
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 2 6.0297 35.0199 34.4101 2 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 3 6.0279 35.0201 34.4091 3 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 4 6.0272 35.0203 34.4091 4 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 5 6.0273 35.0204 34.4097 4.9 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 6 6.0274 35.0205 34.4104 5.9 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 3 6.4129 34.5637 34.3541 3 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 4 6.4349 34.5748 34.3844 4 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 5 6.4803 34.5932 34.4426 4.9 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 6 6.4139 34.5624 34.3552 5.9 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 7 6.5079 34.6097 34.4834 6.9 11111
这个解决方案非常复杂,并且依赖于对几个 Tidyverse 库和功能的了解。我不确定它对您的需求有多稳健,但它确实可以处理您发布的示例。但是折叠块的方法,创建函数来解析较小的块,然后展开结果我认为对你很有帮助。
第一部分涉及找到“$”标记,将后续行组合在一起,然后 "nesting" 将数据块组合在一起。然后我们有一个只有几行的数据框 - 每个部分一行。
library(tidyverse)
txt_lns <- readLines("ocean-sample.txt")
txt <- tibble(txt = txt_lns)
# Start by finding new sections, and nesting the data
nested_txt <- txt %>%
mutate(row_number = row_number()) %>%
mutate(new_section = str_detect(txt, "\$")) %>% # Mark new sections
mutate(starting = ifelse(new_section, row_number, NA)) %>% # Index with row num
tidyr::fill(starting) %>% # Fill index down
# where missing
select(-new_section) %>% # Clean up
filter(!str_detect(txt, "\$")) %>%
nest(data = c(txt, row_number)) # "Nest" the data
# Take a quick look
nested_txt
然后,我们需要能够处理那些嵌套块。此处的例程通过识别 header 行来解析这些块,然后将字段分成它们自己的数据帧。在这里,我们对 header 行与较短的较小行有不同的逻辑。
# Deal with the records within a section
parse_inner_block <- function(x, header_ind) {
if (header_ind) {
df <- x %>%
mutate(txt = str_trim(txt)) %>%
# Separate the header row into 22 variables
separate(txt, into = LETTERS[1:22], sep = "\s+")
} else {
df <- x %>%
mutate(txt = str_trim(txt)) %>%
# Separate the lesser rows into 6 variables
separate(txt, into = letters[1:6], sep = "\s+")
}
return(df)
}
parse_outer_block <- function(x) {
df <- x %>%
# Determine if it's a header row with 22 variables or lesser row with 6
mutate(leading_row = (row_number == min(row_number))) %>%
# Fold by header row vs. not
nest(data = c(txt, row_number)) %>%
# Create data frames for both header and lesser rows
mutate(processed = purrr::map2(data, leading_row, parse_inner_block)) %>%
unnest(processed) %>%
# Copy header row values to lesser rows
tidyr::fill(A:V) %>%
# Drop header row
filter(!leading_row)
return(df)
}
然后我们可以将它们放在一起——从我们的嵌套数据开始,处理每个块,取消嵌套返回的字段,并准备完整的输出。
# Actually put all this together and generate an output dataframe
output <- nested_txt %>%
mutate(proc_out = purrr::map(data, parse_outer_block)) %>%
select(-data) %>%
unnest(proc_out) %>%
select(-starting, -leading_row, -data, -row_number)
output
希望对您有所帮助。对于一些类似的问题,我建议您也查看一些 purrr
教程。
这个比较简单,只依赖于基础R。我假设你已经先阅读了x <- readLines(....)
的文本文件:
start <- which(x == "$") + 1 # Find header indices
rows <- diff(c(start, length(x)+2)) - 2 # Find number of lines per group
# Function to read header and rows and cbind
getdata <- function(begin, end) {
cbind(read.table(text=x[begin]), read.table(text=x[(begin+1):(begin+end)]))
}
dta.list <- lapply(1:(length(start)), function(i) getdata(start[i], rows[i]))
dta.df <- do.call(rbind, dta.list)
这适用于您在 post 中包含的两个组。您需要修复列名,因为 V1 - V6 在开头和结尾重复。
我正在尝试在 R 中打开和清理一个庞大的海洋学数据集,其中台站信息散布在 headers 观察块之间:
$
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999.0 -9 -9 -9 -9 4868.8 2017 0 7114
2.0 6.0297 35.0199 34.4101 2.0 11111
3.0 6.0279 35.0201 34.4091 3.0 11111
4.0 6.0272 35.0203 34.4091 4.0 11111
5.0 6.0273 35.0204 34.4097 4.9 11111
6.0 6.0274 35.0205 34.4104 5.9 11111
$
2008 1 777 8 17 12 7 25 78.4738 8.3510 27 6 4.1 -999.0 3 7 2 0 4903.8 1570 0 7114
3.0 6.4129 34.5637 34.3541 3.0 11111
4.0 6.4349 34.5748 34.3844 4.0 11111
5.0 6.4803 34.5932 34.4426 4.9 11111
6.0 6.4139 34.5624 34.3552 5.9 11111
7.0 6.5079 34.6097 34.4834 6.9 11111
每个 $
后跟一行包含站数据(例如年、...、纬度、经度、日期、时间),然后是几行包含在该站采样的观测值(例如深度、温度、盐度等)。
我想将站数据添加到观测中,这样每个变量就是一列 每个观察都是一行,如下所示:
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 2 6.0297 35.0199 34.4101 2 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 3 6.0279 35.0201 34.4091 3 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 4 6.0272 35.0203 34.4091 4 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 5 6.0273 35.0204 34.4097 4.9 11111
2008 1 774 8 17 5 11 2 78.4952 6.0375 30 7 1.2 -999 6 6.0274 35.0205 34.4104 5.9 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 3 6.4129 34.5637 34.3541 3 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 4 6.4349 34.5748 34.3844 4 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 5 6.4803 34.5932 34.4426 4.9 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 6 6.4139 34.5624 34.3552 5.9 11111
2008 1 777 8 17 12 7 25 78.4738 8.351 27 6 4.1 -999 7 6.5079 34.6097 34.4834 6.9 11111
这个解决方案非常复杂,并且依赖于对几个 Tidyverse 库和功能的了解。我不确定它对您的需求有多稳健,但它确实可以处理您发布的示例。但是折叠块的方法,创建函数来解析较小的块,然后展开结果我认为对你很有帮助。
第一部分涉及找到“$”标记,将后续行组合在一起,然后 "nesting" 将数据块组合在一起。然后我们有一个只有几行的数据框 - 每个部分一行。
library(tidyverse)
txt_lns <- readLines("ocean-sample.txt")
txt <- tibble(txt = txt_lns)
# Start by finding new sections, and nesting the data
nested_txt <- txt %>%
mutate(row_number = row_number()) %>%
mutate(new_section = str_detect(txt, "\$")) %>% # Mark new sections
mutate(starting = ifelse(new_section, row_number, NA)) %>% # Index with row num
tidyr::fill(starting) %>% # Fill index down
# where missing
select(-new_section) %>% # Clean up
filter(!str_detect(txt, "\$")) %>%
nest(data = c(txt, row_number)) # "Nest" the data
# Take a quick look
nested_txt
然后,我们需要能够处理那些嵌套块。此处的例程通过识别 header 行来解析这些块,然后将字段分成它们自己的数据帧。在这里,我们对 header 行与较短的较小行有不同的逻辑。
# Deal with the records within a section
parse_inner_block <- function(x, header_ind) {
if (header_ind) {
df <- x %>%
mutate(txt = str_trim(txt)) %>%
# Separate the header row into 22 variables
separate(txt, into = LETTERS[1:22], sep = "\s+")
} else {
df <- x %>%
mutate(txt = str_trim(txt)) %>%
# Separate the lesser rows into 6 variables
separate(txt, into = letters[1:6], sep = "\s+")
}
return(df)
}
parse_outer_block <- function(x) {
df <- x %>%
# Determine if it's a header row with 22 variables or lesser row with 6
mutate(leading_row = (row_number == min(row_number))) %>%
# Fold by header row vs. not
nest(data = c(txt, row_number)) %>%
# Create data frames for both header and lesser rows
mutate(processed = purrr::map2(data, leading_row, parse_inner_block)) %>%
unnest(processed) %>%
# Copy header row values to lesser rows
tidyr::fill(A:V) %>%
# Drop header row
filter(!leading_row)
return(df)
}
然后我们可以将它们放在一起——从我们的嵌套数据开始,处理每个块,取消嵌套返回的字段,并准备完整的输出。
# Actually put all this together and generate an output dataframe
output <- nested_txt %>%
mutate(proc_out = purrr::map(data, parse_outer_block)) %>%
select(-data) %>%
unnest(proc_out) %>%
select(-starting, -leading_row, -data, -row_number)
output
希望对您有所帮助。对于一些类似的问题,我建议您也查看一些 purrr
教程。
这个比较简单,只依赖于基础R。我假设你已经先阅读了x <- readLines(....)
的文本文件:
start <- which(x == "$") + 1 # Find header indices
rows <- diff(c(start, length(x)+2)) - 2 # Find number of lines per group
# Function to read header and rows and cbind
getdata <- function(begin, end) {
cbind(read.table(text=x[begin]), read.table(text=x[(begin+1):(begin+end)]))
}
dta.list <- lapply(1:(length(start)), function(i) getdata(start[i], rows[i]))
dta.df <- do.call(rbind, dta.list)
这适用于您在 post 中包含的两个组。您需要修复列名,因为 V1 - V6 在开头和结尾重复。