使用此列中已存在的另一个值填充 nan 值

filling nan values with the another value which is already exist in this column

我想用该列中已经存在的值填充一个列。我的意思是所有值都应该是 'Texas' 或另一个值(列中存在哪个值)。我尝试了 ffill 和 bfill,它正在工作但是有很多数据帧具有这样的 nan 值但它们的位置不同对于每个数据帧。如您所见,顶部和底部值 'nan',因此 ffill 和 bfill 不起作用。如何用 'Texas'?

填充 nan 值
Date                       Country
2019-11-10 00:00:00            nan        
2019-11-10 01:00:00          Texas
2019-11-10 02:00:00          Texas
2019-11-10 03:00:00            nan
2019-11-10 04:00:00            nan          
2019-11-10 05:00:00          Texas
2019-11-10 06:00:00            nan 
2019-11-10 07:00:00          Texas
2019-11-10 08:00:00            nan           
2019-11-10 09:00:00          Texas
2019-11-10 10:00:00            nan         
2019-11-10 11:00:00            nan         
2019-11-10 12:00:00          Texas
2019-11-10 13:00:00          Texas
2019-11-10 14:00:00            nan        
2019-11-10 15:00:00            nan
2019-11-10 16:00:00            nan
2019-11-10 17:00:00          Texas
2019-11-10 18:00:00            nan          
2019-11-10 19:00:00            nan
2019-11-10 20:00:00            nan
2019-11-10 21:00:00          Texas
2019-11-10 22:00:00          Texas
2019-11-10 23:00:00            nan
                    .
                    .
                    .
2019-11-20 23:00:00            nan

我认为您需要在解决方案之前将字符串 nan 替换为缺失值 NaNs:

df['Country'] = df['Country'].replace('nan', np.nan).ffill().bfill()