tf.data.Dataset:不得为给定的输入类型指定“batch_size”参数
tf.data.Dataset: The `batch_size` argument must not be specified for the given input type
我正在使用 Talos 和 Google colab TPU 来 运行 超参数调整 Keras 模型。请注意,我使用的是 Tensorflow 1.15.0 和 Keras 2.2.4-tf.
import os
import tensorflow as tf
import talos as ta
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
def iris_model(x_train, y_train, x_val, y_val, params):
# Specify a distributed strategy to use TPU
resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.contrib.distribute.initialize_tpu_system(resolver)
strategy = tf.contrib.distribute.TPUStrategy(resolver)
# Use the strategy to create and compile a Keras model
with strategy.scope():
model = Sequential()
model.add(Dense(32, input_shape=(4,), activation=tf.nn.relu, name="relu"))
model.add(Dense(3, activation=tf.nn.softmax, name="softmax"))
model.compile(optimizer=Adam(learning_rate=0.1), loss=params['losses'])
# Convert data type to use TPU
x_train = x_train.astype('float32')
x_val = x_val.astype('float32')
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.cache()
dataset = dataset.shuffle(1000, reshuffle_each_iteration=True).repeat()
dataset = dataset.batch(params['batch_size'], drop_remainder=True)
# Fit the Keras model on the dataset
out = model.fit(dataset, batch_size=params['batch_size'], epochs=params['epochs'], validation_data=[x_val, y_val], verbose=0, steps_per_epoch=2)
return out, model
# Load dataset
X, y = ta.templates.datasets.iris()
# Train and test set
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.30, shuffle=False)
# Create a hyperparameter distributions
p = {'losses': ['logcosh'], 'batch_size': [128, 256, 384, 512, 1024], 'epochs': [10, 20]}
# Use Talos to scan the best hyperparameters of the Keras model
scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
使用 tf.data.Dataset
将训练集转换为数据集后,使用 out = model.fit
拟合模型时出现以下错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-c812209b95d0> in <module>()
8
9 # Use Talos to scan the best hyperparameters of the Keras model
---> 10 scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py in _validate_or_infer_batch_size(self, batch_size, steps, x)
1813 'The `batch_size` argument must not be specified for the given '
1814 'input type. Received input: {}, batch_size: {}'.format(
-> 1815 x, batch_size))
1816 return
1817
ValueError: The `batch_size` argument must not be specified for the given input type. Received input: <DatasetV1Adapter shapes: ((512, 4), (512, 3)), types: (tf.float32, tf.float32)>, batch_size: 512
然后,如果我按照这些说明操作并且不将批量大小参数设置为 model.fit
。我收到另一个错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-c812209b95d0> in <module>()
8
9 # Use Talos to scan the best hyperparameters of the Keras model
---> 10 scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py in _distribution_standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, validation_split, shuffle, epochs, allow_partial_batch)
2307 strategy) and not drop_remainder:
2308 dataset_size = first_x_value.shape[0]
-> 2309 if dataset_size % batch_size == 0:
2310 drop_remainder = True
2311
TypeError: unsupported operand type(s) for %: 'int' and 'NoneType'
来自 github code :
ValueError will be
raised if x
is a generator or Sequence
instance and batch_size
is
specified as we expect users to provide batched datasets.
尝试使用 batch_size = None
不确定以下内容是否符合您的要求,但可以尝试一下。我所做的只是从数据集中删除 repeat() 并从 model.fit
中删除 batch_size=params['batch_size']
如果以上不是你准备牺牲的,那么请忽略post。
import os
import tensorflow as tf
import talos as ta
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
def iris_model(x_train, y_train, x_val, y_val, params):
# Specify a distributed strategy to use TPU
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_host(resolver.master())
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
with strategy.scope():
model = Sequential()
model.add(Dense(32, input_dim=4, activation=params['activation']))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer=params['optimizer'], loss=params['losses'])
# Convert the train set to a Dataset to use TPU
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.cache().shuffle(1000, reshuffle_each_iteration=True).batch(params['batch_size'], drop_remainder=True)
out = model.fit(dataset, epochs=params['epochs'], validation_data=[x_val, y_val], verbose=0)
return out, model
x, y = ta.templates.datasets.iris()
p = {'activation': ['relu', 'elu'],
'optimizer': ['Nadam', 'Adam'],
'losses': ['logcosh'],
'batch_size': (20, 50, 5),
'epochs': [10, 20]}
scan_object = ta.Scan(x, y, model=iris_model, params=p, fraction_limit=0.1, experiment_name='first_test')
您在
_distribution_standardize_user_data
中遇到的第二个错误是当您没有将 batch_size
传递给 fit 时。
您为该函数 运行 编写的代码在这里:
https://github.com/tensorflow/tensorflow/blob/r1.15/tensorflow/python/keras/engine/training.py#L2192
您没有 post 追溯,但我敢打赌它在 line 2294 上失败了,因为那是唯一 batch_size
乘以某些东西的地方。
if shuffle:
# We want a buffer size that is larger than the batch size provided by
# the user and provides sufficient randomness. Note that larger
# numbers introduce more memory usage based on the size of each
# sample.
ds = ds.shuffle(max(1024, batch_size * 8))
看来你可以通过设置shuffle=False
来关闭它。
fit(ds, shuffle=False,...)
行得通吗?
你能从你的代码中删除这些行并尝试:
dataset = dataset.cache()
dataset = dataset.shuffle(1000, reshuffle_each_iteration=True).repeat()
dataset = dataset.batch(params['batch_size'], drop_remainder=True)
WITH THESE:
dataset = dataset.repeat()
dataset = dataset.batch(128, drop_remainder=True)
dataset = dataset.prefetch(1)
否则你在tf.data.Dataset.from_tensor_slices
中所写的内容与错误有关。
在我看来,您的代码的问题在于训练
和验证数据的格式不同。你正在批处理
训练数据而不是验证示例。
您可以通过替换
iris_model
函数的下半部分:
def fix_data(x, y):
x = x.astype('float32')
ds = Dataset.from_tensor_slices((x, y))
ds = ds.cache()
ds = ds.shuffle(1000, reshuffle_each_iteration = True)
ds = ds.repeat()
ds = ds.batch(params['batch_size'], drop_remainder = True)
return ds
train = fix_data(x_train, y_train)
val = fix_data(x_val, y_val)
# Fit the Keras model on the dataset
out = model.fit(x = train, epochs = params['epochs'],
steps_per_epoch = 2,
validation_data = val,
validation_steps = 2)
至少这对我有用,而且你的代码运行没有错误。
我正在使用 Talos 和 Google colab TPU 来 运行 超参数调整 Keras 模型。请注意,我使用的是 Tensorflow 1.15.0 和 Keras 2.2.4-tf.
import os
import tensorflow as tf
import talos as ta
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
def iris_model(x_train, y_train, x_val, y_val, params):
# Specify a distributed strategy to use TPU
resolver = tf.contrib.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.contrib.distribute.initialize_tpu_system(resolver)
strategy = tf.contrib.distribute.TPUStrategy(resolver)
# Use the strategy to create and compile a Keras model
with strategy.scope():
model = Sequential()
model.add(Dense(32, input_shape=(4,), activation=tf.nn.relu, name="relu"))
model.add(Dense(3, activation=tf.nn.softmax, name="softmax"))
model.compile(optimizer=Adam(learning_rate=0.1), loss=params['losses'])
# Convert data type to use TPU
x_train = x_train.astype('float32')
x_val = x_val.astype('float32')
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.cache()
dataset = dataset.shuffle(1000, reshuffle_each_iteration=True).repeat()
dataset = dataset.batch(params['batch_size'], drop_remainder=True)
# Fit the Keras model on the dataset
out = model.fit(dataset, batch_size=params['batch_size'], epochs=params['epochs'], validation_data=[x_val, y_val], verbose=0, steps_per_epoch=2)
return out, model
# Load dataset
X, y = ta.templates.datasets.iris()
# Train and test set
x_train, x_val, y_train, y_val = train_test_split(X, y, test_size=0.30, shuffle=False)
# Create a hyperparameter distributions
p = {'losses': ['logcosh'], 'batch_size': [128, 256, 384, 512, 1024], 'epochs': [10, 20]}
# Use Talos to scan the best hyperparameters of the Keras model
scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
使用 tf.data.Dataset
将训练集转换为数据集后,使用 out = model.fit
拟合模型时出现以下错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-c812209b95d0> in <module>()
8
9 # Use Talos to scan the best hyperparameters of the Keras model
---> 10 scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py in _validate_or_infer_batch_size(self, batch_size, steps, x)
1813 'The `batch_size` argument must not be specified for the given '
1814 'input type. Received input: {}, batch_size: {}'.format(
-> 1815 x, batch_size))
1816 return
1817
ValueError: The `batch_size` argument must not be specified for the given input type. Received input: <DatasetV1Adapter shapes: ((512, 4), (512, 3)), types: (tf.float32, tf.float32)>, batch_size: 512
然后,如果我按照这些说明操作并且不将批量大小参数设置为 model.fit
。我收到另一个错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-c812209b95d0> in <module>()
8
9 # Use Talos to scan the best hyperparameters of the Keras model
---> 10 scan_object = ta.Scan(x_train, y_train, params=p, model=iris_model, experiment_name='test', x_val=x_val, y_val=y_val, fraction_limit=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py in _distribution_standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, validation_split, shuffle, epochs, allow_partial_batch)
2307 strategy) and not drop_remainder:
2308 dataset_size = first_x_value.shape[0]
-> 2309 if dataset_size % batch_size == 0:
2310 drop_remainder = True
2311
TypeError: unsupported operand type(s) for %: 'int' and 'NoneType'
来自 github code :
ValueError will be raised if
x
is a generator orSequence
instance andbatch_size
is specified as we expect users to provide batched datasets.
尝试使用 batch_size = None
不确定以下内容是否符合您的要求,但可以尝试一下。我所做的只是从数据集中删除 repeat() 并从 model.fit
中删除 batch_size=params['batch_size']如果以上不是你准备牺牲的,那么请忽略post。
import os
import tensorflow as tf
import talos as ta
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
def iris_model(x_train, y_train, x_val, y_val, params):
# Specify a distributed strategy to use TPU
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_host(resolver.master())
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
with strategy.scope():
model = Sequential()
model.add(Dense(32, input_dim=4, activation=params['activation']))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer=params['optimizer'], loss=params['losses'])
# Convert the train set to a Dataset to use TPU
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.cache().shuffle(1000, reshuffle_each_iteration=True).batch(params['batch_size'], drop_remainder=True)
out = model.fit(dataset, epochs=params['epochs'], validation_data=[x_val, y_val], verbose=0)
return out, model
x, y = ta.templates.datasets.iris()
p = {'activation': ['relu', 'elu'],
'optimizer': ['Nadam', 'Adam'],
'losses': ['logcosh'],
'batch_size': (20, 50, 5),
'epochs': [10, 20]}
scan_object = ta.Scan(x, y, model=iris_model, params=p, fraction_limit=0.1, experiment_name='first_test')
您在
_distribution_standardize_user_data
中遇到的第二个错误是当您没有将 batch_size
传递给 fit 时。
您为该函数 运行 编写的代码在这里:
https://github.com/tensorflow/tensorflow/blob/r1.15/tensorflow/python/keras/engine/training.py#L2192
您没有 post 追溯,但我敢打赌它在 line 2294 上失败了,因为那是唯一 batch_size
乘以某些东西的地方。
if shuffle:
# We want a buffer size that is larger than the batch size provided by
# the user and provides sufficient randomness. Note that larger
# numbers introduce more memory usage based on the size of each
# sample.
ds = ds.shuffle(max(1024, batch_size * 8))
看来你可以通过设置shuffle=False
来关闭它。
fit(ds, shuffle=False,...)
行得通吗?
你能从你的代码中删除这些行并尝试:
dataset = dataset.cache()
dataset = dataset.shuffle(1000, reshuffle_each_iteration=True).repeat()
dataset = dataset.batch(params['batch_size'], drop_remainder=True)
WITH THESE:
dataset = dataset.repeat()
dataset = dataset.batch(128, drop_remainder=True)
dataset = dataset.prefetch(1)
否则你在tf.data.Dataset.from_tensor_slices
中所写的内容与错误有关。
在我看来,您的代码的问题在于训练 和验证数据的格式不同。你正在批处理 训练数据而不是验证示例。
您可以通过替换
iris_model
函数的下半部分:
def fix_data(x, y):
x = x.astype('float32')
ds = Dataset.from_tensor_slices((x, y))
ds = ds.cache()
ds = ds.shuffle(1000, reshuffle_each_iteration = True)
ds = ds.repeat()
ds = ds.batch(params['batch_size'], drop_remainder = True)
return ds
train = fix_data(x_train, y_train)
val = fix_data(x_val, y_val)
# Fit the Keras model on the dataset
out = model.fit(x = train, epochs = params['epochs'],
steps_per_epoch = 2,
validation_data = val,
validation_steps = 2)
至少这对我有用,而且你的代码运行没有错误。