'n' 个形状文件的交叉区域 - Python
Intersection Area of 'n' shapefiles - Python
我有 'n' 个 shapefile,我需要在它们相交的地方求和一个特定的属性。在某些点它们都相交,在其他点只有一些相交而在其他点我没有任何交集。我的最终结果将是单个 shapefile('n' shapefile 的联合'),其中对于每个交叉区域,我得到特定属性的总和。有没有一种简单的方法可以做到这一点,而无需转换为光栅?我已经尝试使用 Geopandas "Overlay" 函数,但没有多次迭代,我只能得到所有 shapefile 相交的区域,而不是其中一些相交的区域。
您可以在此处找到形状文件:http://www.mediafire.com/folder/2ckfxkfda0asm/shapes
import pandas as pd
import geopandas as gpd
g1 = gpd.GeoDataFrame.from_file("shape1.shp")
g2 = gpd.GeoDataFrame.from_file("shape2.shp")
g3 = gpd.GeoDataFrame.from_file("shape3.shp")
g1['number'] = pd.to_numeric(g1['number'])
g2['number'] = pd.to_numeric(g2['number'])
g3['number'] = pd.to_numeric(g3['number'])
df = pd.concat([g1,g2,g3])
intersection = g1
simmetric = g1
lista = [g2,g3]
for i in lista:
intersection = gpd.overlay(intersection, i, how='intersection').fillna(0)
intersection.index = pd.RangeIndex(len(intersection.index))
intersection.loc[:,'number'] = intersection.loc[:,'number_1'].add(intersection.loc[:,'number_2'])
intersection.drop(["number_1", "number_2"], axis = 1, inplace = True)
simmetric = gpd.overlay(simmetric, i, how='symmetric_difference').fillna(0)
simmetric.loc[:,'number'] = simmetric.loc[:,'number_1'].add(simmetric.loc[:,'number_2'])
simmetric.drop(["number_1", "number_2"], axis = 1, inplace = True)
final_result = pd.concat([simmetric,intersection])
final_result.to_file("result.shp")
example
我认为问题在于您没有正确保存 intersection
和 simmertric
输出地理数据框。您必须在 for 循环之前初始化 final_result
,并在 for 循环内与自身连接。
from shapely.geometry import Polygon
import geopandas as gpd
import pandas as pd
polys1 = gpd.GeoSeries([Polygon([(0,0), (2,0), (2,2), (0,2)]),
Polygon([(2,2), (4,2), (4,4), (2,4)])])
polys2 = gpd.GeoSeries([Polygon([(-1,-1), (1,-1), (1,1), (-1,1)]),
Polygon([(1,1), (3,1), (3,3), (1,3)])])
polys3 = gpd.GeoSeries([Polygon([(1,1), (3,1), (3,3), (1,3)]),
Polygon([(3,3), (5,3), (5,5), (3,5)]),
Polygon([(6,6), (8,6),(8,8),(6,8)])])
df1 = gpd.GeoDataFrame({'geometry': polys1, 'rate_cars':[10,20]})
df2 = gpd.GeoDataFrame({'geometry': polys2, 'rate_cars':[100,200]})
df3 = gpd.GeoDataFrame({'geometry': polys3, 'rate_cars':[1,2,3]})
merge = pd.concat([df1,df2, df3],ignore_index=True)
out = gpd.GeoDataFrame()
for df in [df1,df2,df3]:
#find which records dont come from the current iteration
mask = merge.geom_equals(df)
tmp = merge.copy()
tmp = tmp[~mask]
#find any non intersection features
mask1 = tmp.intersects(df)
#non intersectiong features
non_inter = gpd.overlay(tmp, df, how='symmetric_difference')
non_inter.loc[:,'total'] = non_inter.sum(axis=1)
non_inter = non_inter.drop(['rate_cars_1', 'rate_cars_2'], axis=1)
non_inter = non_inter[['total', 'geometry']]
non_inter.loc[:,'grid_feature'] = 'street'
non_inter = non_inter[['total','grid_feature','geometry']]
#find intersections
res_intersection = gpd.overlay(tmp, df, how='intersection')
res_intersection.loc[:,'total'] = res_intersection.sum(axis=1)
res_intersection = res_intersection.drop(['rate_cars_1', 'rate_cars_2'], axis=1)
res_intersection = res_intersection[['total', 'geometry']]
res_intersection.loc[:,'grid_feature'] = 'intersection'
res_intersection = res_intersection[['total','grid_feature','geometry']]
out = pd.concat([out, res_intersection, non_inter])
out = out.drop_duplicates()
其中 out returns
:
total grid_feature geometry
0 110.0 intersection POLYGON ((0.00000 1.00000, 1.00000 1.00000, 1....
1 210.0 intersection POLYGON ((1.00000 1.00000, 1.00000 2.00000, 2....
2 11.0 intersection POLYGON ((1.00000 1.00000, 1.00000 2.00000, 2....
3 220.0 intersection POLYGON ((2.00000 3.00000, 3.00000 3.00000, 3....
4 21.0 intersection POLYGON ((2.00000 3.00000, 3.00000 3.00000, 3....
5 22.0 intersection POLYGON ((3.00000 3.00000, 3.00000 4.00000, 4....
0 100.0 street POLYGON ((-1.00000 -1.00000, -1.00000 1.00000,...
1 200.0 street MULTIPOLYGON (((1.00000 2.00000, 1.00000 3.000...
2 1.0 street MULTIPOLYGON (((1.00000 2.00000, 1.00000 3.000...
3 2.0 street POLYGON ((3.00000 4.00000, 3.00000 5.00000, 5....
4 3.0 street POLYGON ((6.00000 6.00000, 6.00000 8.00000, 8....
5 10.0 street MULTIPOLYGON (((0.00000 1.00000, 0.00000 2.000...
6 20.0 street MULTIPOLYGON (((2.00000 3.00000, 2.00000 4.000...
0 110.0 intersection POLYGON ((0.00000 0.00000, 0.00000 1.00000, 1....
1 200.0 intersection POLYGON ((-1.00000 -1.00000, -1.00000 1.00000,...
2 210.0 intersection POLYGON ((1.00000 2.00000, 2.00000 2.00000, 2....
3 220.0 intersection POLYGON ((2.00000 2.00000, 2.00000 3.00000, 3....
4 400.0 intersection POLYGON ((1.00000 1.00000, 1.00000 3.00000, 3....
5 201.0 intersection POLYGON ((1.00000 1.00000, 1.00000 3.00000, 3....
1 20.0 street POLYGON ((2.00000 3.00000, 2.00000 4.00000, 4....
2 2.0 street POLYGON ((3.00000 3.00000, 3.00000 5.00000, 5....
0 11.0 intersection POLYGON ((1.00000 2.00000, 2.00000 2.00000, 2....
1 21.0 intersection POLYGON ((2.00000 2.00000, 2.00000 3.00000, 3....
3 2.0 intersection POLYGON ((1.00000 1.00000, 1.00000 3.00000, 3....
4 22.0 intersection POLYGON ((3.00000 4.00000, 4.00000 4.00000, 4....
5 4.0 intersection POLYGON ((3.00000 3.00000, 3.00000 5.00000, 5....
6 6.0 intersection POLYGON ((6.00000 6.00000, 6.00000 8.00000, 8....
0 10.0 street POLYGON ((0.00000 0.00000, 0.00000 2.00000, 1....
2 100.0 street POLYGON ((-1.00000 -1.00000, -1.00000 1.00000,...
我有 'n' 个 shapefile,我需要在它们相交的地方求和一个特定的属性。在某些点它们都相交,在其他点只有一些相交而在其他点我没有任何交集。我的最终结果将是单个 shapefile('n' shapefile 的联合'),其中对于每个交叉区域,我得到特定属性的总和。有没有一种简单的方法可以做到这一点,而无需转换为光栅?我已经尝试使用 Geopandas "Overlay" 函数,但没有多次迭代,我只能得到所有 shapefile 相交的区域,而不是其中一些相交的区域。
您可以在此处找到形状文件:http://www.mediafire.com/folder/2ckfxkfda0asm/shapes
import pandas as pd
import geopandas as gpd
g1 = gpd.GeoDataFrame.from_file("shape1.shp")
g2 = gpd.GeoDataFrame.from_file("shape2.shp")
g3 = gpd.GeoDataFrame.from_file("shape3.shp")
g1['number'] = pd.to_numeric(g1['number'])
g2['number'] = pd.to_numeric(g2['number'])
g3['number'] = pd.to_numeric(g3['number'])
df = pd.concat([g1,g2,g3])
intersection = g1
simmetric = g1
lista = [g2,g3]
for i in lista:
intersection = gpd.overlay(intersection, i, how='intersection').fillna(0)
intersection.index = pd.RangeIndex(len(intersection.index))
intersection.loc[:,'number'] = intersection.loc[:,'number_1'].add(intersection.loc[:,'number_2'])
intersection.drop(["number_1", "number_2"], axis = 1, inplace = True)
simmetric = gpd.overlay(simmetric, i, how='symmetric_difference').fillna(0)
simmetric.loc[:,'number'] = simmetric.loc[:,'number_1'].add(simmetric.loc[:,'number_2'])
simmetric.drop(["number_1", "number_2"], axis = 1, inplace = True)
final_result = pd.concat([simmetric,intersection])
final_result.to_file("result.shp")
example
我认为问题在于您没有正确保存 intersection
和 simmertric
输出地理数据框。您必须在 for 循环之前初始化 final_result
,并在 for 循环内与自身连接。
from shapely.geometry import Polygon
import geopandas as gpd
import pandas as pd
polys1 = gpd.GeoSeries([Polygon([(0,0), (2,0), (2,2), (0,2)]),
Polygon([(2,2), (4,2), (4,4), (2,4)])])
polys2 = gpd.GeoSeries([Polygon([(-1,-1), (1,-1), (1,1), (-1,1)]),
Polygon([(1,1), (3,1), (3,3), (1,3)])])
polys3 = gpd.GeoSeries([Polygon([(1,1), (3,1), (3,3), (1,3)]),
Polygon([(3,3), (5,3), (5,5), (3,5)]),
Polygon([(6,6), (8,6),(8,8),(6,8)])])
df1 = gpd.GeoDataFrame({'geometry': polys1, 'rate_cars':[10,20]})
df2 = gpd.GeoDataFrame({'geometry': polys2, 'rate_cars':[100,200]})
df3 = gpd.GeoDataFrame({'geometry': polys3, 'rate_cars':[1,2,3]})
merge = pd.concat([df1,df2, df3],ignore_index=True)
out = gpd.GeoDataFrame()
for df in [df1,df2,df3]:
#find which records dont come from the current iteration
mask = merge.geom_equals(df)
tmp = merge.copy()
tmp = tmp[~mask]
#find any non intersection features
mask1 = tmp.intersects(df)
#non intersectiong features
non_inter = gpd.overlay(tmp, df, how='symmetric_difference')
non_inter.loc[:,'total'] = non_inter.sum(axis=1)
non_inter = non_inter.drop(['rate_cars_1', 'rate_cars_2'], axis=1)
non_inter = non_inter[['total', 'geometry']]
non_inter.loc[:,'grid_feature'] = 'street'
non_inter = non_inter[['total','grid_feature','geometry']]
#find intersections
res_intersection = gpd.overlay(tmp, df, how='intersection')
res_intersection.loc[:,'total'] = res_intersection.sum(axis=1)
res_intersection = res_intersection.drop(['rate_cars_1', 'rate_cars_2'], axis=1)
res_intersection = res_intersection[['total', 'geometry']]
res_intersection.loc[:,'grid_feature'] = 'intersection'
res_intersection = res_intersection[['total','grid_feature','geometry']]
out = pd.concat([out, res_intersection, non_inter])
out = out.drop_duplicates()
其中 out returns
:
total grid_feature geometry
0 110.0 intersection POLYGON ((0.00000 1.00000, 1.00000 1.00000, 1....
1 210.0 intersection POLYGON ((1.00000 1.00000, 1.00000 2.00000, 2....
2 11.0 intersection POLYGON ((1.00000 1.00000, 1.00000 2.00000, 2....
3 220.0 intersection POLYGON ((2.00000 3.00000, 3.00000 3.00000, 3....
4 21.0 intersection POLYGON ((2.00000 3.00000, 3.00000 3.00000, 3....
5 22.0 intersection POLYGON ((3.00000 3.00000, 3.00000 4.00000, 4....
0 100.0 street POLYGON ((-1.00000 -1.00000, -1.00000 1.00000,...
1 200.0 street MULTIPOLYGON (((1.00000 2.00000, 1.00000 3.000...
2 1.0 street MULTIPOLYGON (((1.00000 2.00000, 1.00000 3.000...
3 2.0 street POLYGON ((3.00000 4.00000, 3.00000 5.00000, 5....
4 3.0 street POLYGON ((6.00000 6.00000, 6.00000 8.00000, 8....
5 10.0 street MULTIPOLYGON (((0.00000 1.00000, 0.00000 2.000...
6 20.0 street MULTIPOLYGON (((2.00000 3.00000, 2.00000 4.000...
0 110.0 intersection POLYGON ((0.00000 0.00000, 0.00000 1.00000, 1....
1 200.0 intersection POLYGON ((-1.00000 -1.00000, -1.00000 1.00000,...
2 210.0 intersection POLYGON ((1.00000 2.00000, 2.00000 2.00000, 2....
3 220.0 intersection POLYGON ((2.00000 2.00000, 2.00000 3.00000, 3....
4 400.0 intersection POLYGON ((1.00000 1.00000, 1.00000 3.00000, 3....
5 201.0 intersection POLYGON ((1.00000 1.00000, 1.00000 3.00000, 3....
1 20.0 street POLYGON ((2.00000 3.00000, 2.00000 4.00000, 4....
2 2.0 street POLYGON ((3.00000 3.00000, 3.00000 5.00000, 5....
0 11.0 intersection POLYGON ((1.00000 2.00000, 2.00000 2.00000, 2....
1 21.0 intersection POLYGON ((2.00000 2.00000, 2.00000 3.00000, 3....
3 2.0 intersection POLYGON ((1.00000 1.00000, 1.00000 3.00000, 3....
4 22.0 intersection POLYGON ((3.00000 4.00000, 4.00000 4.00000, 4....
5 4.0 intersection POLYGON ((3.00000 3.00000, 3.00000 5.00000, 5....
6 6.0 intersection POLYGON ((6.00000 6.00000, 6.00000 8.00000, 8....
0 10.0 street POLYGON ((0.00000 0.00000, 0.00000 2.00000, 1....
2 100.0 street POLYGON ((-1.00000 -1.00000, -1.00000 1.00000,...