通过 extending/compressing 将向量归一化为给定长度

Normalize a vector by extending/compressing it to a given length

我有一个包含 122 个值的向量:

vec1 = c(0,0,0,0,0,0,0,0,-0.0029,-0.0029,-0.0029,-0.0029,-0.0029,-0.0029,-0.0044,-0.0044,-0.0059,-0.0073,-0.0073,-0.0088,-0.0088,-0.0102,-0.0132,-0.0176,-0.0249,-0.0293,-0.0322,-0.0337,-0.0337,-0.0337,-0.0337,-0.0337,-0.0337,-0.0351,-0.0425,-0.0512,-0.0586,-0.0659,-0.0703,-0.0805,-0.0937,-0.1127,-0.1347,-0.1508,-0.1581,-0.1611,-0.1669,-0.1684,-0.1698,-0.1698,-0.1698,-0.1698,-0.1552,-0.1362,-0.104,-0.0439,0.0747,0.2035,0.3353,0.4583,0.5695,0.6501,0.7277,0.7687,0.7892,0.8038,0.8097,0.8141,0.8184,0.8214,0.8243,0.8243,0.8053,0.7804,0.6603,0.5066,0.3338,0.1435,-0.1127,-0.41,-0.6442,-0.8097,-0.8858,-0.9092,-0.9092,-0.9092,-0.9092,-0.9092,-0.9092,-0.9092,-0.9092,-0.9092,-0.9092,-0.9034,-0.8946,-0.8741,-0.8433,-0.8228,-0.8126,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082,-0.8082)

现在我想通过压缩到 100 个值来规范化它,即在这种情况下,vec1 的每 1.22 个值应该由 norm_vec1 的 1 个值表示,如下所示:

norm_vec1 [1] = mean (vec1 [1]) ## (because round(1.22) = 1)
norm_vec1 [2] = mean (vec1 [2]) ## (because round(1.22*2) = 2)
norm_vec1 [3] = mean (vec1 [3:4]) ## (because round(1.22*3) = 4)
norm_vec1 [4] = mean (vec1 [5]) ## (because round(1.22*4) = 5)

等等

因此,我应该在向量 norm_vec1 中得到 100 个值,每个值要么直接取自 vec1,要么是平均的结果,具体取决于它的位置。 vec1 的任何值都不应遗漏。 重要的是,这也适用于小于 100 的向量(例如,63 个元素):

norm_short_vec1 [1] = mean (short_vec1 [1]) ## (because round(0.63*1)=1)
norm_short_vec1 [2] = mean (short_vec1 [1]) ## (because round(0.63*2)=1)
norm_short_vec1 [3] = mean (short_vec1 [2]) ## (because round(0.63*3)=2)

等等

或者,或者,每个向量都可以乘以 100,然后新值可以基于来自这个新的更长向量的样本,就像这样(如果 vec1 有 122 个值):

long_vec1 = c(c(vec1 [1] repeated 100 times),  (vec1 [2] repeated 100 times), etc.)
norm_vec1 [1] = mean (long_vec1 [1:122])
norm_vec1 [2] = mean (long_vec1 [123:244])
etc.

有这个功能吗?

compress <- function(x, length.out) {
  n <- length(x)
  if (n < length.out) stop("length.out is too big")
  spl <- round((1:n)/n*length.out)
  res <- sapply(split(x, spl), mean)
  names(res) <- NULL
  res
}

compress(vec1, 100)
#>   [1]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 -0.00145
#>   [8] -0.00290 -0.00290 -0.00290 -0.00290 -0.00440 -0.00440 -0.00590
#>  [15] -0.00730 -0.00805 -0.00880 -0.01020 -0.01320 -0.02125 -0.02930
#>  [22] -0.03220 -0.03370 -0.03370 -0.03370 -0.03370 -0.03370 -0.03510
#>  [29] -0.04250 -0.05490 -0.06590 -0.07030 -0.08050 -0.10320 -0.13470
#>  [36] -0.15080 -0.15810 -0.16110 -0.16765 -0.16980 -0.16980 -0.16980
#>  [43] -0.16250 -0.13620 -0.10400 -0.04390  0.07470  0.26940  0.45830
#>  [50]  0.56950  0.65010  0.74820  0.78920  0.80380  0.80970  0.81410
#>  [57]  0.81990  0.82430  0.82430  0.80530  0.72035  0.50660  0.33380
#>  [64]  0.14350 -0.11270 -0.52710 -0.80970 -0.88580 -0.90920 -0.90920
#>  [71] -0.90920 -0.90920 -0.90920 -0.90920 -0.90920 -0.90920 -0.90340
#>  [78] -0.89460 -0.87410 -0.83305 -0.81260 -0.80820 -0.80820 -0.80820
#>  [85] -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820
#>  [92] -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820
#>  [99] -0.80820 -0.80820

这里spl描述了原始向量的元素和结果向量之间的联系。在此特定示例中,它包含 122 个值:1, 2, 2, 3, 4, ... 99, 100,这意味着第一个元素将直接进入结果向量,然后对第二个和第三个元素进行平均以填充结果向量的元素 2,依此类推。

UPD

基于您的第二个算法的函数。


normalize <- function(x, length.out) {
  n <- length(x)
  big_vec <- rep(x, each = length.out)
  res <- sapply(split(big_vec, rep(1:length.out, each = n)), mean)
  names(res) <- NULL
  res
}

反之亦然:

normalize(1:3, length.out = 5)
#> [1] 1.000000 1.333333 2.000000 2.666667 3.000000

这是 Map 的解决方案。它用于在输入向量中创建索引列表,给出要与 mean.

聚合的向量元素
fun <- function(x, n = 100){
  r <- round(seq_len(n)*length(x)/n)
  d <- c(0, diff(r))
  M <- Map(`:`, (r - d + 1), r)
  sapply(M, function(i) mean(x[i]))
}

fun(vec1)

这里是一个函数 compress,其中包含任何正整数 shortlen 作为对象长度以达到您的压缩目的,其中 splitfindInterval 用于生成块平均:

compress <- function(v, shortlen){
   unname(sapply(split(v,findInterval(seq_along(v),round(length(v)/shortlen*seq_along(v)),left.open = T)),mean))
}

例如:

> compress(vec1,100)
  [1]  0.00000  0.00000  0.00000  0.00000  0.00000  0.00000 -0.00145 -0.00290 -0.00290 -0.00290 -0.00290 -0.00365 -0.00440 -0.00590 -0.00730 -0.00805 -0.00880
 [18] -0.01020 -0.01320 -0.01760 -0.02710 -0.03220 -0.03370 -0.03370 -0.03370 -0.03370 -0.03370 -0.03510 -0.04250 -0.05490 -0.06590 -0.07030 -0.08050 -0.09370
 [35] -0.12370 -0.15080 -0.15810 -0.16110 -0.16765 -0.16980 -0.16980 -0.16980 -0.16980 -0.14570 -0.10400 -0.04390  0.07470  0.26940  0.45830  0.56950  0.65010
 [52]  0.72770  0.77895  0.80380  0.80970  0.81410  0.81990  0.82430  0.82430  0.80530  0.78040  0.58345  0.33380  0.14350 -0.11270 -0.52710 -0.80970 -0.88580
 [69] -0.90920 -0.90920 -0.90920 -0.90920 -0.90920 -0.90920 -0.90920 -0.90920 -0.90340 -0.89460 -0.87410 -0.83305 -0.81260 -0.80820 -0.80820 -0.80820 -0.80820
 [86] -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820
> compress(vec1,63)
 [1]  0.00000  0.00000  0.00000  0.00000 -0.00290 -0.00290 -0.00290 -0.00440 -0.00515 -0.00730 -0.00880 -0.01170 -0.02125 -0.03075 -0.03370 -0.03370 -0.03370
[18] -0.03880 -0.05490 -0.06810 -0.08710 -0.12370 -0.15445 -0.16110 -0.16765 -0.16980 -0.16980 -0.14570 -0.07395  0.13910  0.39680  0.60980  0.74820  0.79650
[35]  0.81190  0.81990  0.82430  0.79285  0.58345  0.33380  0.01540 -0.52710 -0.84775 -0.90920 -0.90920 -0.90920 -0.90920 -0.90920 -0.89900 -0.85870 -0.81770
[52] -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820 -0.80820

有趣的问题。这是一个选项:

alex_normalize <- function(vec, tol = 100) {
    k <- length(vec) / tol
    from <- round(k * seq_len(tol))
    sapply(
      seq_len(tol), 
      function(i) mean(vec[seq(max(from[i-1L], 1L), from[i])])
    )
}

alex_normalize(vec1)

  [1]  0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000  0.0000000000
  [7] -0.0009666667 -0.0029000000 -0.0029000000 -0.0029000000 -0.0029000000 -0.0034000000
 [13] -0.0044000000 -0.0051500000 -0.0066000000 -0.0078000000 -0.0088000000 -0.0095000000
 [19] -0.0117000000 -0.0154000000 -0.0239333333 -0.0307500000 -0.0329500000 -0.0337000000
 [25] -0.0337000000 -0.0337000000 -0.0337000000 -0.0344000000 -0.0388000000 -0.0507666667
 [31] -0.0622500000 -0.0681000000 -0.0754000000 -0.0871000000 -0.1137000000 -0.1427500000
 [37] -0.1544500000 -0.1596000000 -0.1654666667 -0.1691000000 -0.1698000000 -0.1698000000
 [43] -0.1698000000 -0.1537333333 -0.1201000000 -0.0739500000  0.0154000000  0.2045000000
 [49]  0.3968000000  0.5139000000  0.6098000000  0.6889000000  0.7618666667  0.7965000000
 [55]  0.8067500000  0.8119000000  0.8179666667  0.8228500000  0.8243000000  0.8148000000
 [61]  0.7928500000  0.6491000000  0.4202000000  0.2386500000  0.0154000000 -0.3889666667
 [67] -0.7269500000 -0.8477500000 -0.8975000000 -0.9092000000 -0.9092000000 -0.9092000000
 [73] -0.9092000000 -0.9092000000 -0.9092000000 -0.9092000000 -0.9063000000 -0.8990000000
 [79] -0.8843500000 -0.8467333333 -0.8177000000 -0.8104000000 -0.8082000000 -0.8082000000
 [85] -0.8082000000 -0.8082000000 -0.8082000000 -0.8082000000 -0.8082000000 -0.8082000000
 [91] -0.8082000000 -0.8082000000 -0.8082000000 -0.8082000000 -0.8082000000 -0.8082000000
 [97] -0.8082000000 -0.8082000000 -0.8082000000 -0.8082000000