为什么 C# 的速度是 C++ 的两倍,即使生成的机器代码几乎相同?

Why C# is twice as slow as C++ even though the generated machine code is nearly identical?

此代码由 .NET Core 3.0 JIT 生成,用于我手动矢量化的 C# 代码:

00007FFE6C7D2103  vmovdqu     xmm5,xmmword ptr [rcx]  
00007FFE6C7D2107  vmovdqu     xmm6,xmmword ptr [rcx+10h]  
00007FFE6C7D210C  vmovdqu     xmm7,xmmword ptr [rcx+20h]  
00007FFE6C7D2111  vmovdqu     xmm8,xmmword ptr [rcx+30h]  
00007FFE6C7D2116  vpand       xmm9,xmm5,xmm0  
00007FFE6C7D211A  vpand       xmm10,xmm6,xmm0  
00007FFE6C7D211E  vpackusdw   xmm9,xmm9,xmm10  
00007FFE6C7D2123  vpslldq     xmm9,xmm9,1  
00007FFE6C7D2129  vpand       xmm10,xmm5,xmm1  
00007FFE6C7D212D  vpand       xmm11,xmm6,xmm1  
00007FFE6C7D2131  vpackusdw   xmm10,xmm10,xmm11  
00007FFE6C7D2136  vpsrldq     xmm5,xmm5,1  
00007FFE6C7D213B  vpsrldq     xmm6,xmm6,1  
00007FFE6C7D2140  vpand       xmm5,xmm5,xmm1  
00007FFE6C7D2144  vpand       xmm6,xmm6,xmm1  
00007FFE6C7D2148  vpackusdw   xmm5,xmm5,xmm6  
                var low = brightness( r, g, b, redMul, greenMul, blueMul );
00007FFE6C7D214D  vpmulhuw    xmm9,xmm9,xmm2  
00007FFE6C7D2151  vpmulhuw    xmm10,xmm10,xmm3  
00007FFE6C7D2155  vpmulhuw    xmm5,xmm5,xmm4  
00007FFE6C7D2159  vpaddusw    xmm6,xmm9,xmm10  
00007FFE6C7D215E  vpaddusw    xmm5,xmm6,xmm5  
00007FFE6C7D2162  vpsrlw      xmm5,xmm5,8  
00007FFE6C7D2167  vpand       xmm6,xmm7,xmm0  
00007FFE6C7D216B  vpand       xmm9,xmm8,xmm0  
00007FFE6C7D216F  vpackusdw   xmm6,xmm6,xmm9  
00007FFE6C7D2174  vpslldq     xmm9,xmm6,1  
00007FFE6C7D2179  vpand       xmm6,xmm7,xmm1  
00007FFE6C7D217D  vpand       xmm10,xmm8,xmm1  
00007FFE6C7D2181  vpackusdw   xmm10,xmm6,xmm10  
00007FFE6C7D2186  vpsrldq     xmm6,xmm7,1  
00007FFE6C7D218B  vpsrldq     xmm7,xmm8,1  
00007FFE6C7D2191  vpand       xmm6,xmm6,xmm1  
00007FFE6C7D2195  vpand       xmm7,xmm7,xmm1  
00007FFE6C7D2199  vpackusdw   xmm6,xmm6,xmm7  
                var hi = brightness( r, g, b, redMul, greenMul, blueMul );
00007FFE6C7D219E  vpmulhuw    xmm7,xmm9,xmm2  
00007FFE6C7D21A2  vpmulhuw    xmm8,xmm10,xmm3  
00007FFE6C7D21A6  vpmulhuw    xmm6,xmm6,xmm4  
00007FFE6C7D21AA  vpaddusw    xmm7,xmm7,xmm8  
00007FFE6C7D21AF  vpaddusw    xmm6,xmm7,xmm6  
00007FFE6C7D21B3  vpsrlw      xmm6,xmm6,8  
00007FFE6C7D21B8  vpackuswb   xmm5,xmm5,xmm6  
                Sse2.Store( dst, bytes );
00007FFE6C7D21BC  vmovdqu     xmmword ptr [rdx],xmm5  

                src += 64;
00007FFE6C7D21C0  add         rcx,40h  
                dst += 16;
00007FFE6C7D21C4  add         rdx,10h  
            while( src < srcEnd )
00007FFE6C7D21C8  cmp         rcx,rax  
00007FFE6C7D21CB  jb          00007FFE6C7D2103 

此代码由 VC++ 2015 年编译我的手动矢量化 C++ 时生成。

    {
        VecInteger r, g, b;

        loadRgb( src, r, g, b );
00007FF735AD11C0  vmovdqu     xmm6,xmmword ptr [rcx-10h]
00007FF735AD11C5  vmovdqu     xmm7,xmmword ptr [rcx-20h]

        loadRgb( src + 2, r, g, b );
00007FF735AD11CA  vmovdqu     xmm9,xmmword ptr [rcx]
00007FF735AD11CE  vmovdqu     xmm8,xmmword ptr [rcx+10h]
    {
        VecInteger r, g, b;

        loadRgb( src, r, g, b );
00007FF735AD11D3  vpand       xmm3,xmm10,xmm6  
00007FF735AD11D7  vpand       xmm1,xmm11,xmm6  
00007FF735AD11DB  vpand       xmm0,xmm11,xmm7  
00007FF735AD11DF  vpackusdw   xmm1,xmm0,xmm1  
00007FF735AD11E4  vpslldq     xmm2,xmm1,1  
        const auto low = brightness( r, g, b );
00007FF735AD11E9  vpmulhuw    xmm4,xmm2,xmm12  
00007FF735AD11EE  vpand       xmm0,xmm10,xmm7  
00007FF735AD11F2  vpackusdw   xmm1,xmm0,xmm3  
        const auto low = brightness( r, g, b );
00007FF735AD11F7  vpmulhuw    xmm2,xmm1,xmm13  
00007FF735AD11FC  vpaddusw    xmm5,xmm4,xmm2  
    {
        VecInteger r, g, b;

        loadRgb( src, r, g, b );
00007FF735AD1200  vpsrldq     xmm0,xmm6,1  
00007FF735AD1205  vpand       xmm3,xmm0,xmm10  
00007FF735AD120A  vpsrldq     xmm1,xmm7,1  
00007FF735AD120F  vpand       xmm2,xmm1,xmm10  
00007FF735AD1214  vpackusdw   xmm0,xmm2,xmm3  
        const auto low = brightness( r, g, b );
00007FF735AD1219  vpmulhuw    xmm3,xmm0,xmm14  
00007FF735AD121E  vpaddusw    xmm1,xmm5,xmm3  
00007FF735AD1222  vpsrlw      xmm6,xmm1,8  

        loadRgb( src + 2, r, g, b );
00007FF735AD1227  vpand       xmm2,xmm11,xmm8  
00007FF735AD122C  vpand       xmm0,xmm11,xmm9  
00007FF735AD1231  vpackusdw   xmm1,xmm0,xmm2  
00007FF735AD1236  vpslldq     xmm2,xmm1,1  
        const auto hi = brightness( r, g, b );
00007FF735AD123B  vpmulhuw    xmm4,xmm2,xmm12  

        loadRgb( src + 2, r, g, b );
00007FF735AD1240  vpand       xmm0,xmm10,xmm9  
00007FF735AD1245  vpand       xmm3,xmm10,xmm8  
00007FF735AD124A  vpackusdw   xmm1,xmm0,xmm3  
        const auto hi = brightness( r, g, b );
00007FF735AD124F  vpmulhuw    xmm2,xmm1,xmm13  
00007FF735AD1254  vpaddusw    xmm5,xmm4,xmm2  

        loadRgb( src + 2, r, g, b );
00007FF735AD1258  vpsrldq     xmm1,xmm9,1  
00007FF735AD125E  vpand       xmm2,xmm1,xmm10  
00007FF735AD1263  vpsrldq     xmm0,xmm8,1  
00007FF735AD1269  vpand       xmm3,xmm0,xmm10  
00007FF735AD126E  vpackusdw   xmm0,xmm2,xmm3  
        const auto hi = brightness( r, g, b );
00007FF735AD1273  vpmulhuw    xmm3,xmm0,xmm14  
00007FF735AD1278  vpaddusw    xmm1,xmm5,xmm3  
00007FF735AD127C  vpsrlw      xmm2,xmm1,8  

        src += 4;
00007FF735AD1281  lea         rcx,[rcx+40h]  

        const auto bytes = packus_epi16( low, hi );
00007FF735AD1285  vpackuswb   xmm0,xmm6,xmm2  
    VecInteger* dest = (VecInteger*)destinationBytes;

    while( src < srcEnd )
00007FF735AD1289  lea         rax,[rcx-20h]  
        storeu_all( dest, bytes );
00007FF735AD128D  vmovdqu     xmmword ptr [rdx],xmm0  
        dest++;
00007FF735AD1291  lea         rdx,[rdx+10h]  
00007FF735AD1295  cmp         rax,r8  
00007FF735AD1298  jb          Sse::convertToGrayscale+80h (07FF735AD11C0h)  

上面的两个片段都只包括程序的主循环。如您所见,它们具有几乎相同的指令,但 C# 的速度是 C++ 的两倍。

具体来说,当使用 511M 像素进行测试时,我的 PC (AMD Ryzen 5 3600) C++ 代码需要 221 毫秒,C# 代码需要 410 毫秒。

为什么?


有关 C# 源代码,请参阅 Why is C# twice as slow as C++ even though the generated machine code is nearly identical?

C++ 源代码:https://github.com/Const-me/IntelIntrinsics/blob/master/CppDemo/brightness.cpp https://github.com/Const-me/IntelIntrinsics/blob/master/CppDemo/brightness.inl

原因是 JIT 开销。在对 .NET 代码进行基准测试时,您应该始终放弃第一个度量,因为它包括运行时从 IL 生成 x86 代码所花费的时间。

这是我测量 3 次而不是 1 次(对于 5.11 亿像素)后测试应用打印的内容:

#1 391.1885 ms, #2 216.985 ms, #3 235.5549 ms

源代码:https://gist.github.com/Const-me/0f0c283a0b998aa9977550d85fa33958

这些 ~220 毫秒非常接近等效 C++ 代码的性能。所以 C# SIMD 并没有那么糟糕。