更快的计算混淆矩阵的方法?

Faster method of computing confusion matrix?

我正在计算我的混淆矩阵,如下所示用于图像语义分割,这是一种非常冗长的方法:

def confusion_matrix(preds, labels, conf_m, sample_size):
    preds = normalize(preds,0.9) # returns [0,1] tensor
    preds = preds.flatten()
    labels = labels.flatten()
    for i in range(len(preds)):
        if preds[i]==1 and labels[i]==1:
            conf_m[0,0] += 1/(len(preds)*sample_size) # TP
        elif preds[i]==1 and labels[i]==0:
            conf_m[0,1] += 1/(len(preds)*sample_size) # FP
        elif preds[i]==0 and labels[i]==0:
            conf_m[1,0] += 1/(len(preds)*sample_size) # TN
        elif preds[i]==0 and labels[i]==1:
            conf_m[1,1] += 1/(len(preds)*sample_size) # FN 
    return conf_m

在预测循环中:

conf_m = torch.zeros(2,2) # two classes (object or no-object)
for img,label in enumerate(data):
    ...
    out = Net(img)
    conf_m = confusion_matrix(out, label, len(data))
    ...

是否有更快的方法(在 PyTorch 中)来有效计算图像语义分割输入样本的混淆矩阵?

我使用这两个函数来计算混淆矩阵(如 sklearn 中所定义):

# rewrite sklearn method to torch
def confusion_matrix_1(y_true, y_pred):
    N = max(max(y_true), max(y_pred)) + 1
    y_true = torch.tensor(y_true, dtype=torch.long)
    y_pred = torch.tensor(y_pred, dtype=torch.long)
    return torch.sparse.LongTensor(
        torch.stack([y_true, y_pred]), 
        torch.ones_like(y_true, dtype=torch.long),
        torch.Size([N, N])).to_dense()

# weird trick with bincount
def confusion_matrix_2(y_true, y_pred):
    N = max(max(y_true), max(y_pred)) + 1
    y_true = torch.tensor(y_true, dtype=torch.long)
    y_pred = torch.tensor(y_pred, dtype=torch.long)
    y = N * y_true + y_pred
    y = torch.bincount(y)
    if len(y) < N * N:
        y = torch.cat(y, torch.zeros(N * N - len(y), dtype=torch.long))
    y = y.reshape(N, N)
    return y

y_true = [2, 0, 2, 2, 0, 1]
y_pred = [0, 0, 2, 2, 0, 2]

confusion_matrix_1(y_true, y_pred)
# tensor([[2, 0, 0],
#         [0, 0, 1],
#         [1, 0, 2]])

第二个函数在 类 数量较少的情况下更快。

%%timeit
confusion_matrix_1(y_true, y_pred)
# 102 µs ± 30.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

%%timeit
confusion_matrix_2(y_true, y_pred)
# 25 µs ± 149 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

感谢Grigory Feldman的解答!我必须更改一些内容才能与我的实施一起使用。

对于未来的观察者,这是我的最终函数,它总结了一批输入中每个混淆矩阵的百分比(用于训练或测试循环)

def confusion_matrix_2(y_true, y_pred, sample_sz, conf_m):
    y_pred = normalize(y_pred,0.9)
    obj = y_true[y_true==1]
    no_obj = y_true[y_true==0]
    N = torch.tensor(torch.max(torch.max(y_true), torch.max(y_pred)) + 1,dtype=torch.int)
    y_true = torch.tensor(y_true, dtype=torch.long)
    y_pred = torch.tensor(y_pred, dtype=torch.long)
    y = N * y_true + y_pred
    y = torch.bincount(y.flatten())
    if len(y) < N * N:
        y = torch.cat((y, torch.zeros(N * N - len(y), dtype=torch.long)))
    y = y.reshape(N.item(), N.item())
    y = y.float()
    conf_m[0,:] += y[0,:]/(len(no_obj)*sample_sz)
    conf_m[1,:] += y[1,:]/(len(obj)*sample_sz)
    return conf_m

...
conf_m = torch.zeros((2, 2),dtype=torch.float) # two classes (object or no-object)
for _, data in enumerate(dataloader):
    for img,label in enumerate(data):
        ...
        out = Net(img)
        conf_m = confusion_matrix(out, label, len(data))
        ...
    ...

也感谢 Grigory Feldman 的回答!
Mr.O 我用 numpy 制作。

# weird trick with bincount
def confusion_matrix_2_numpy(y_true, y_pred, N=None):
    y_true = y_true.reshape(-1)
    y_pred = y_pred.reshape(-1) 
    if (N is None):
        N = max(max(y_true), max(y_pred)) + 1
    y = N * y_true + y_pred
    y = np.bincount(y, minlength=N*N)
    y = y.reshape(N, N)
    return y

请试试这个。
当您使用已知的 class_num 时,它会更快。
我应该提到的一件事是,在某些情况下,最大值可能与 类.
的原始数字不匹配 例如,当batch size小,每次迭代都对混淆矩阵进行积分。