如何基于微调的 VGGNet16 创建子模型
How to create a sub-model based on fine-tuned VGGNet16
为了寻找两张图片之间的相似性,设计了以下网络架构。
最初,我拿了VGGNet16,去掉了分类头:
vgg_model = VGG16(weights="imagenet", include_top=False,
input_tensor=Input(shape=(img_width, img_height, channels)))
之后,我设置参数layer.trainable = False,这样网络就会作为特征提取器工作。
我向网络传递了两个不同的图像:
encoded_left = vgg_model(input_left)
encoded_right = vgg_model(input_right)
这将产生两个特征向量。然后对于分类(无论它们是否相似),我使用了一个度量网络,它由 2 个卷积层、池化层和 4 个全连接层组成。
merge(encoded_left, encoded_right) -> conv-pool -> conv-pool -> reshape -> dense * 4 -> output
因此,模型看起来像:
model = Model(inputs=[left_image, right_image], outputs=output)
仅训练度量网络后,为了微调卷积层,我将最后一个卷积块设置为训练。因此,在第二个训练阶段,随着metric network,最后一个卷积块也被训练了。
现在我想将这个微调的网络用于另一个目的。这是网络摘要:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
__________________________________________________________________________________________________
input_2 (InputLayer) (None, 224, 224, 3) 0
__________________________________________________________________________________________________
vgg16 (Model) (None, 7, 7, 512) 14714688 input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
Merged_feature_map (Concatenate (None, 7, 7, 1024) 0 vgg16[1][0]
vgg16[2][0]
__________________________________________________________________________________________________
mnet_conv1 (Conv2D) (None, 7, 7, 1024) 4195328 Merged_feature_map[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 7, 7, 1024) 4096 mnet_conv1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, 7, 7, 1024) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
mnet_pool1 (MaxPooling2D) (None, 3, 3, 1024) 0 activation_1[0][0]
__________________________________________________________________________________________________
mnet_conv2 (Conv2D) (None, 3, 3, 2048) 8390656 mnet_pool1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 3, 3, 2048) 8192 mnet_conv2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, 3, 3, 2048) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
mnet_pool2 (MaxPooling2D) (None, 1, 1, 2048) 0 activation_2[0][0]
__________________________________________________________________________________________________
reshape_1 (Reshape) (None, 1, 2048) 0 mnet_pool2[0][0]
__________________________________________________________________________________________________
fc1 (Dense) (None, 1, 256) 524544 reshape_1[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 1, 256) 1024 fc1[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, 1, 256) 0 batch_normalization_3[0][0]
__________________________________________________________________________________________________
fc2 (Dense) (None, 1, 128) 32896 activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 1, 128) 512 fc2[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, 1, 128) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
fc3 (Dense) (None, 1, 64) 8256 activation_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 1, 64) 256 fc3[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, 1, 64) 0 batch_normalization_5[0][0]
__________________________________________________________________________________________________
fc4 (Dense) (None, 1, 1) 65 activation_5[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 1, 1) 4 fc4[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, 1, 1) 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
reshape_2 (Reshape) (None, 1) 0 activation_6[0][0]
==================================================================================================
Total params: 27,880,517
Trainable params: 13,158,787
Non-trainable params: 14,721,730
由于 VGGNet 的最后一个卷积块已经在自定义数据集上进行了训练,因此我想在图层上切割网络:
__________________________________________________________________________________________________
vgg16 (Model) (None, 7, 7, 512) 14714688 input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
并将其用作强大的特征提取器。对于此任务,我加载了微调模型:
model = load_model('model.h5')
然后尝试将新模型创建为:
new_model = Model(Input(shape=(img_width, img_height, channels)), model.layers[2].output)
这会导致以下错误:
`AttributeError: Layer vgg16 has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `get_output_at(node_index)` instead.`
请告诉我哪里做错了。
我尝试了几种方法,但以下方法非常有效。而不是创建新模型:
model = load_model('model.h5')
new_model = Model(Input(shape=(img_width, img_height, channels)), model.layers[2].output)
我使用了以下方式:
model = load_model('model.h5')
sub_model = Sequential()
for layer in model.get_layer('vgg16').layers:
sub_model.add(layer)
希望这对其他人有所帮助。
为了寻找两张图片之间的相似性,设计了以下网络架构。
最初,我拿了VGGNet16,去掉了分类头:
vgg_model = VGG16(weights="imagenet", include_top=False,
input_tensor=Input(shape=(img_width, img_height, channels)))
之后,我设置参数layer.trainable = False,这样网络就会作为特征提取器工作。
我向网络传递了两个不同的图像:
encoded_left = vgg_model(input_left)
encoded_right = vgg_model(input_right)
这将产生两个特征向量。然后对于分类(无论它们是否相似),我使用了一个度量网络,它由 2 个卷积层、池化层和 4 个全连接层组成。
merge(encoded_left, encoded_right) -> conv-pool -> conv-pool -> reshape -> dense * 4 -> output
因此,模型看起来像:
model = Model(inputs=[left_image, right_image], outputs=output)
仅训练度量网络后,为了微调卷积层,我将最后一个卷积块设置为训练。因此,在第二个训练阶段,随着metric network,最后一个卷积块也被训练了。
现在我想将这个微调的网络用于另一个目的。这是网络摘要:
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
__________________________________________________________________________________________________
input_2 (InputLayer) (None, 224, 224, 3) 0
__________________________________________________________________________________________________
vgg16 (Model) (None, 7, 7, 512) 14714688 input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
Merged_feature_map (Concatenate (None, 7, 7, 1024) 0 vgg16[1][0]
vgg16[2][0]
__________________________________________________________________________________________________
mnet_conv1 (Conv2D) (None, 7, 7, 1024) 4195328 Merged_feature_map[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 7, 7, 1024) 4096 mnet_conv1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, 7, 7, 1024) 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
mnet_pool1 (MaxPooling2D) (None, 3, 3, 1024) 0 activation_1[0][0]
__________________________________________________________________________________________________
mnet_conv2 (Conv2D) (None, 3, 3, 2048) 8390656 mnet_pool1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 3, 3, 2048) 8192 mnet_conv2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, 3, 3, 2048) 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
mnet_pool2 (MaxPooling2D) (None, 1, 1, 2048) 0 activation_2[0][0]
__________________________________________________________________________________________________
reshape_1 (Reshape) (None, 1, 2048) 0 mnet_pool2[0][0]
__________________________________________________________________________________________________
fc1 (Dense) (None, 1, 256) 524544 reshape_1[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 1, 256) 1024 fc1[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, 1, 256) 0 batch_normalization_3[0][0]
__________________________________________________________________________________________________
fc2 (Dense) (None, 1, 128) 32896 activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 1, 128) 512 fc2[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, 1, 128) 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
fc3 (Dense) (None, 1, 64) 8256 activation_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 1, 64) 256 fc3[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, 1, 64) 0 batch_normalization_5[0][0]
__________________________________________________________________________________________________
fc4 (Dense) (None, 1, 1) 65 activation_5[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 1, 1) 4 fc4[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, 1, 1) 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
reshape_2 (Reshape) (None, 1) 0 activation_6[0][0]
==================================================================================================
Total params: 27,880,517
Trainable params: 13,158,787
Non-trainable params: 14,721,730
由于 VGGNet 的最后一个卷积块已经在自定义数据集上进行了训练,因此我想在图层上切割网络:
__________________________________________________________________________________________________
vgg16 (Model) (None, 7, 7, 512) 14714688 input_1[0][0]
input_2[0][0]
__________________________________________________________________________________________________
并将其用作强大的特征提取器。对于此任务,我加载了微调模型:
model = load_model('model.h5')
然后尝试将新模型创建为:
new_model = Model(Input(shape=(img_width, img_height, channels)), model.layers[2].output)
这会导致以下错误:
`AttributeError: Layer vgg16 has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `get_output_at(node_index)` instead.`
请告诉我哪里做错了。
我尝试了几种方法,但以下方法非常有效。而不是创建新模型:
model = load_model('model.h5')
new_model = Model(Input(shape=(img_width, img_height, channels)), model.layers[2].output)
我使用了以下方式:
model = load_model('model.h5')
sub_model = Sequential()
for layer in model.get_layer('vgg16').layers:
sub_model.add(layer)
希望这对其他人有所帮助。