包含不同长度列表的 Unnest 或 unchop 数据框

Unnest or unchop dataframe containing lists of different lengths

我有一个包含多个列的数据框,其中包含我想要 unnest(或 unchop)的列表列。但是,它们的长度不同,所以产生的错误是 Error: No common size for...

这里有一个表示有效和无效的表达式。

library(tidyr)
library(vctrs)

# This works as expected
df_A <- tibble(
  ID = 1:3,
  A = as_list_of(list(c(9, 8, 5), c(7,6), c(6, 9)))
)

unchop(df_A, cols = c(A))
# A tibble: 7 x 2
     ID     A
  <int> <dbl>
1     1     9
2     1     8
3     1     5
4     2     7
5     2     6
6     3     6
7     3     9

# This works as expected as the lists are the same lengths

df_AB_1 <- tibble(
  ID = 1:3,
  A = as_list_of(list(c(9, 8, 5), c(7,6), c(6, 9))),
  B = as_list_of(list(c(1, 2, 3), c(4, 5), c(7, 8)))
)

unchop(df_AB_1, cols = c(A, B))

# A tibble: 7 x 3
     ID     A     B
  <int> <dbl> <dbl>
1     1     9     1
2     1     8     2
3     1     5     3
4     2     7     4
5     2     6     5
6     3     6     7
7     3     9     8

# This does NOT work as the lists are different lengths

df_AB_2 <- tibble(
  ID = 1:3,
  A = as_list_of(list(c(9, 8, 5), c(7,6), c(6, 9))),
  B = as_list_of(list(c(1, 2), c(4, 5, 6), c(7, 8, 9, 0)))
)

unchop(df_AB_2, cols = c(A, B))

# Error: No common size for `A`, size 3, and `B`, size 2.

我想为上面的 df_AB_2 实现的输出如下,其中每个列表未被截断,缺失值用 NA 填充:

# A tibble: 10 x 3
      ID     A     B
   <dbl> <dbl> <dbl>
 1     1     9     1
 2     1     8     2
 3     1     5    NA
 4     2     7     4
 5     2     6     5
 6     2    NA     6
 7     3     6     7
 8     3     9     8
 9     3    NA     9
10     3    NA     0

我已经引用了这个issue on Github and Whosebug here

有什么想法可以实现上述结果吗?

版本

> packageVersion("tidyr")
[1] ‘1.0.0’
> packageVersion("vctrs")
[1] ‘0.2.0.9001’

定义一个辅助函数来更新元素的长度并继续 dplyr:

foo <- function(x, len_vec) {
  lapply(
    seq_len(length(x)), 
    function(i) {
      length(x[[i]]) <- len_vec[i]
      x[[i]]
    } 
  )
}

df_AB_2 %>% 
  mutate(maxl = pmax(lengths(A), lengths(B))) %>% 
  mutate(A = foo(A, maxl), B = foo(B, maxl)) %>% 
  unchop(cols = c(A, B)) %>% 
  select(-maxl)

# A tibble: 10 x 3
      ID     A     B
   <int> <dbl> <dbl>
 1     1     9     1
 2     1     8     2
 3     1     5    NA
 4     2     7     4
 5     2     6     5
 6     2    NA     6
 7     3     6     7
 8     3     9     8
 9     3    NA     9
10     3    NA     0

使用data.table:

library(data.table)
setDT(df_AB_2)
df_AB_2[, maxl := pmax(lengths(A), lengths(B))]
df_AB_2[, .(unlist(A)[seq_len(maxl)], unlist(B)[seq_len(maxl)]), by = ID]

这是 dplyr 的一个想法,您可以根据需要推广到任意多的列,

library(tidyverse)

df_AB_2 %>% 
 pivot_longer(c(A, B)) %>% 
 mutate(value = lapply(value, `length<-`, max(lengths(value)))) %>% 
 pivot_wider(names_from = name, values_from = value) %>% 
 unnest() %>% 
 filter(rowSums(is.na(.[-1])) != 2)

这给出了,

# A tibble: 10 x 3
      ID     A     B
   <int> <dbl> <dbl>
 1     1     9     1
 2     1     8     2
 3     1     5    NA
 4     2     7     4
 5     2     6     5
 6     2    NA     6
 7     3     6     7
 8     3     9     8
 9     3    NA     9
10     3    NA     0