Pandas Dataframe:将两列相乘

Pandas Dataframe: Multiplying Two Columns

我正在尝试将数据框 (OPR) 中的两列 (ActualSalary * FTE) 相乘以创建一个新列 (FTESalary),但不知何故它已停在第 21357 行,我不明白哪里出了问题或如何修复它。这两列来自使用以下行导入 csv 文件:OPR = pd.read_csv('OPR.csv', encoding='latin1')

[In] OPR
[out]
ActualSalary    FTE
44600           1
58,000.00       1
70,000.00       1
17550           1
34693           1
15674           0.4

[In] OPR["FTESalary"] = OPR["ActualSalary"].str.replace(",", "").astype("float")*OPR["FTE"]
[In] OPR
[out]
ActualSalary    FTE FTESalary
44600           1   44600
58,000.00       1   58000
70,000.00       1   70000
17550           1   NaN
34693           1   NaN
15674           0.4 NaN

我根本不期望任何 NULL 值作为输出,我真的很难解决这个问题。我真的很感激你的帮助。 提前谢谢了! (我对编码和这里都是新手,如果我犯了错误或者可以改进我在这里 post 提问的方式,请通过消息告诉我)

分享数据@oppresiveslayer

[In] OPR[0:6].to_dict()
[out]
{'ActualSalary': {0: '44600',
1: '58,000.00',
2: '70,000.00',
3: '39,780.00',
4: '0.00',
5: '78,850.00'},
 'FTE': {0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0, 5: 1.0}}

有关@charlesreid1 两栏的更多信息

[in] OPR['ActualSalary'].astype
[out]
Name: ActualSalary, Length: 21567, dtype: object>

[in] OPR['FTE'].astype
[out]
Name: FTE, Length: 21567, dtype: float64>

我使用的版本: python:3.7.3,pandas:jupyter Notebook 6.0.0 上的 0.25.1

这应该有效:

OTR['FTESalary'] = OTR.apply(lambda x: pd.to_numeric(x['ActualSalary'].replace(",", ""), errors='coerce') * x['FTE'], axis=1)

输出

  ActualSalary  FTE  FTESalary
0        44600  1.0    44600.0
1    58,000.00  1.0    58000.0
2    70,000.00  1.0    70000.0
3        17550  1.0    17550.0
4        34693  1.0    34693.0
5        15674  0.4     6269.6

好的,我认为你需要这样做:

OTR['FTESalary'] = OTR.reset_index().apply(lambda x: pd.to_numeric(x['ActualSalary'].replace(",", ""), errors='coerce') * x['FTE'], axis=1).to_numpy().tolist() 

我能够分几步完成,但是列表理解对于初学者来说可能不太可读。它创建了一个中间列,该列进行浮点数转换,因为您的 ActualSalary 列在开头充满了字符串。

OPR["X"] = [float(x.replace(",","")) for x in OPR["ActualSalary"]]
OPR["FTESalary"] = OPR["X"]*OPR["FTE"]

我认为您的 ActualSalary 列是字符串和整数的混合体。这是我能够重现您的错误的唯一方法:

df = pd.DataFrame(
    {'ActualSalary': ['44600', '58,000.00', '70,000.00', 17550, 34693, 15674],
     'FTE': [1, 1, 1, 1, 1, 0.4]})

>>> df['ActualSalary'].str.replace(',', '').astype(float) * df['FTE']
0    44600.0
1    58000.0
2    70000.0
3        NaN
4        NaN
5        NaN
dtype: float64

当您尝试删除逗号时出现问题:

>>> df['ActualSalary'].str.replace(',', '')
0       44600
1    58000.00
2    70000.00
3         NaN
4         NaN
5         NaN
Name: ActualSalary, dtype: object

首先将它们转换为字符串,然后再转换回浮点数。

fte_salary = (
    df['ActualSalary'].astype(str).str.replace(',', '')  # Remove commas in string, e.g. '55,000.00' -> '55000.00'
    .astype(float)  # Convert string column to floats.
    .mul(df['FTE'])  # Multiply by new salary column by Full-Time-Equivalent (FTE) column.
)
>>> df.assign(FTESalary=fte_salary)  # Assign new column to dataframe.
      ActualSalary  FTE  FTESalary
    0        44600  1.0    44600.0
    1    58,000.00  1.0    58000.0
    2    70,000.00  1.0    70000.0
    3        17550  1.0    17550.0
    4        34693  1.0    34693.0
    5        15674  0.4     6269.6