Pandas 中两个特定日期时间范围之间的数字出现
Occurrence of a number between two specific datetime ranges in Pandas
我有 2 个 CSV 文件,如下所示。
- 我想要一个新专栏
Difference
,其中...
- 如果手机号码出现在
Book_date
...App_date
的日期范围内:Difference
= 区别App_date
和Occur_date
- 或 NaN(如果它未出现在该日期范围内)。
- 我还想根据唯一类别过滤它 mobile_number
csv_1
Mobile_Number Book_Date App_Date
503477334 2018-10-12 2018-10-18
506002884 2018-10-12 2018-10-19
501022162 2018-10-12 2018-10-16
503487338 2018-10-13 2018-10-13
506012887 2018-10-13 2018-10-21
503427339 2018-10-14 2018-10-17
csv_2
Mobile_Number Occur_Date
503477334 2018-10-16
506002884 2018-10-21
501022162 2018-10-15
503487338 2018-10-13
501428449 2018-10-18
506012887 2018-10-14
我想要 csv_1 中的新列,其中如果手机号码出现在 csv_2 中 Book_date 和 App_date 的日期范围内,则 [= =62=] 和 Occur_date 或 NaN(如果它未出现在该日期范围内)。输出应该是
输出
Mobile_Number Book_Date App_Date Difference
503477334 2018-10-12 2018-10-18 2
506002884 2018-10-12 2018-10-19 -2
501022162 2018-10-12 2018-10-16 1
503487338 2018-10-13 2018-10-13 0
506012887 2018-10-13 2018-10-21 7
503427339 2018-10-14 2018-10-17 NaN
编辑:
如果我想根据以上两个 csv 文件的唯一类别和 mobile_number 过滤它。如何做同样的事情?
csv_1
Category Mobile_Number Book_Date App_Date
A 503477334 2018-10-12 2018-10-18
B 503477334 2018-10-07 2018-10-16
C 501022162 2018-10-12 2018-10-16
A 503487338 2018-10-13 2018-10-13
C 506012887 2018-10-13 2018-10-21
E 503427339 2018-10-14 2018-10-17
csv_2
Category Mobile_Number Occur_Date
A 503477334 2018-10-16
B 503477334 2018-10-13
A 501022162 2018-10-15
A 503487338 2018-10-13
F 501428449 2018-10-18
C 506012887 2018-10-14
我希望根据 Mobile_Number 和类别
过滤输出
输出
Category Mobile_Number Book_Date App_Date Difference
A 503477334 2018-10-12 2018-10-18 2
B 503477334 2018-10-07 2018-10-16 3
C 501022162 2018-10-12 2018-10-16 NaN
A 503487338 2018-10-13 2018-10-13 0
C 506012887 2018-10-13 2018-10-21 7
E 503427339 2018-10-14 2018-10-17 NaN
使用Series.map
for new Series
matched by Mobile_Number
and for test values between columns use Series.between
, then assign values by mask with numpy.where
:
df1['Book_Date'] = pd.to_datetime(df1['Book_Date'])
df1['App_Date'] = pd.to_datetime(df1['App_Date'])
df2['Occur_Date'] = pd.to_datetime(df2['Occur_Date'])
s1 = df2.drop_duplicates('Mobile_Number').set_index('Mobile_Number')['Occur_Date']
s2 = df1['Mobile_Number'].map(s1)
m = s2.between(df1['Book_Date'], df1['App_Date'])
#solution with no mask
df1['Difference1'] = df1['App_Date'].sub(s2).dt.days
#solution with test between
df1['Difference2'] = np.where(m, df1['App_Date'].sub(s2).dt.days, np.nan)
print (df1)
Mobile_Number Book_Date App_Date Difference Difference1 Difference2
0 503477334 2018-10-12 2018-10-18 2018-10-16 2.0 2.0
1 506002884 2018-10-12 2018-10-19 2018-10-21 -2.0 NaN
2 501022162 2018-10-12 2018-10-16 2018-10-15 1.0 1.0
3 503487338 2018-10-13 2018-10-13 2018-10-13 0.0 0.0
4 506012887 2018-10-13 2018-10-21 2018-10-14 7.0 7.0
5 503427339 2018-10-14 2018-10-17 NaT NaN NaN
编辑:
您可以使用 merge
而不是 map
来连接 2 列:
df1['Book_Date'] = pd.to_datetime(df1['Book_Date'])
df1['App_Date'] = pd.to_datetime(df1['App_Date'])
df2['Occur_Date'] = pd.to_datetime(df2['Occur_Date'])
df3 = df1.merge(df2, on=['Category','Mobile_Number'], how='left')
print (df3)
Category Mobile_Number Book_Date App_Date Occur_Date
0 A 503477334 2018-10-12 2018-10-18 2018-10-16
1 B 503477334 2018-10-07 2018-10-16 2018-10-13
2 C 501022162 2018-10-12 2018-10-16 NaT
3 A 503487338 2018-10-13 2018-10-13 2018-10-13
4 C 506012887 2018-10-13 2018-10-21 2018-10-14
5 E 503427339 2018-10-14 2018-10-17 NaT
m = df3['Occur_Date'].between(df3['Book_Date'], df3['App_Date'])
#print (m)
df3['Difference2'] = np.where(m, df3['App_Date'].sub(df3['Occur_Date']).dt.days, np.nan)
print (df3)
Category Mobile_Number Book_Date App_Date Occur_Date Difference2
0 A 503477334 2018-10-12 2018-10-18 2018-10-16 2.0
1 B 503477334 2018-10-07 2018-10-16 2018-10-13 3.0
2 C 501022162 2018-10-12 2018-10-16 NaT NaN
3 A 503487338 2018-10-13 2018-10-13 2018-10-13 0.0
4 C 506012887 2018-10-13 2018-10-21 2018-10-14 7.0
5 E 503427339 2018-10-14 2018-10-17 NaT NaN
我有 2 个 CSV 文件,如下所示。
- 我想要一个新专栏
Difference
,其中...- 如果手机号码出现在
Book_date
...App_date
的日期范围内:Difference
= 区别App_date
和Occur_date
- 或 NaN(如果它未出现在该日期范围内)。
- 如果手机号码出现在
- 我还想根据唯一类别过滤它 mobile_number
csv_1
Mobile_Number Book_Date App_Date
503477334 2018-10-12 2018-10-18
506002884 2018-10-12 2018-10-19
501022162 2018-10-12 2018-10-16
503487338 2018-10-13 2018-10-13
506012887 2018-10-13 2018-10-21
503427339 2018-10-14 2018-10-17
csv_2
Mobile_Number Occur_Date
503477334 2018-10-16
506002884 2018-10-21
501022162 2018-10-15
503487338 2018-10-13
501428449 2018-10-18
506012887 2018-10-14
我想要 csv_1 中的新列,其中如果手机号码出现在 csv_2 中 Book_date 和 App_date 的日期范围内,则 [= =62=] 和 Occur_date 或 NaN(如果它未出现在该日期范围内)。输出应该是
输出
Mobile_Number Book_Date App_Date Difference
503477334 2018-10-12 2018-10-18 2
506002884 2018-10-12 2018-10-19 -2
501022162 2018-10-12 2018-10-16 1
503487338 2018-10-13 2018-10-13 0
506012887 2018-10-13 2018-10-21 7
503427339 2018-10-14 2018-10-17 NaN
编辑:
如果我想根据以上两个 csv 文件的唯一类别和 mobile_number 过滤它。如何做同样的事情?
csv_1
Category Mobile_Number Book_Date App_Date
A 503477334 2018-10-12 2018-10-18
B 503477334 2018-10-07 2018-10-16
C 501022162 2018-10-12 2018-10-16
A 503487338 2018-10-13 2018-10-13
C 506012887 2018-10-13 2018-10-21
E 503427339 2018-10-14 2018-10-17
csv_2
Category Mobile_Number Occur_Date
A 503477334 2018-10-16
B 503477334 2018-10-13
A 501022162 2018-10-15
A 503487338 2018-10-13
F 501428449 2018-10-18
C 506012887 2018-10-14
我希望根据 Mobile_Number 和类别
过滤输出输出
Category Mobile_Number Book_Date App_Date Difference
A 503477334 2018-10-12 2018-10-18 2
B 503477334 2018-10-07 2018-10-16 3
C 501022162 2018-10-12 2018-10-16 NaN
A 503487338 2018-10-13 2018-10-13 0
C 506012887 2018-10-13 2018-10-21 7
E 503427339 2018-10-14 2018-10-17 NaN
使用Series.map
for new Series
matched by Mobile_Number
and for test values between columns use Series.between
, then assign values by mask with numpy.where
:
df1['Book_Date'] = pd.to_datetime(df1['Book_Date'])
df1['App_Date'] = pd.to_datetime(df1['App_Date'])
df2['Occur_Date'] = pd.to_datetime(df2['Occur_Date'])
s1 = df2.drop_duplicates('Mobile_Number').set_index('Mobile_Number')['Occur_Date']
s2 = df1['Mobile_Number'].map(s1)
m = s2.between(df1['Book_Date'], df1['App_Date'])
#solution with no mask
df1['Difference1'] = df1['App_Date'].sub(s2).dt.days
#solution with test between
df1['Difference2'] = np.where(m, df1['App_Date'].sub(s2).dt.days, np.nan)
print (df1)
Mobile_Number Book_Date App_Date Difference Difference1 Difference2
0 503477334 2018-10-12 2018-10-18 2018-10-16 2.0 2.0
1 506002884 2018-10-12 2018-10-19 2018-10-21 -2.0 NaN
2 501022162 2018-10-12 2018-10-16 2018-10-15 1.0 1.0
3 503487338 2018-10-13 2018-10-13 2018-10-13 0.0 0.0
4 506012887 2018-10-13 2018-10-21 2018-10-14 7.0 7.0
5 503427339 2018-10-14 2018-10-17 NaT NaN NaN
编辑:
您可以使用 merge
而不是 map
来连接 2 列:
df1['Book_Date'] = pd.to_datetime(df1['Book_Date'])
df1['App_Date'] = pd.to_datetime(df1['App_Date'])
df2['Occur_Date'] = pd.to_datetime(df2['Occur_Date'])
df3 = df1.merge(df2, on=['Category','Mobile_Number'], how='left')
print (df3)
Category Mobile_Number Book_Date App_Date Occur_Date
0 A 503477334 2018-10-12 2018-10-18 2018-10-16
1 B 503477334 2018-10-07 2018-10-16 2018-10-13
2 C 501022162 2018-10-12 2018-10-16 NaT
3 A 503487338 2018-10-13 2018-10-13 2018-10-13
4 C 506012887 2018-10-13 2018-10-21 2018-10-14
5 E 503427339 2018-10-14 2018-10-17 NaT
m = df3['Occur_Date'].between(df3['Book_Date'], df3['App_Date'])
#print (m)
df3['Difference2'] = np.where(m, df3['App_Date'].sub(df3['Occur_Date']).dt.days, np.nan)
print (df3)
Category Mobile_Number Book_Date App_Date Occur_Date Difference2
0 A 503477334 2018-10-12 2018-10-18 2018-10-16 2.0
1 B 503477334 2018-10-07 2018-10-16 2018-10-13 3.0
2 C 501022162 2018-10-12 2018-10-16 NaT NaN
3 A 503487338 2018-10-13 2018-10-13 2018-10-13 0.0
4 C 506012887 2018-10-13 2018-10-21 2018-10-14 7.0
5 E 503427339 2018-10-14 2018-10-17 NaT NaN