轮廓图和 PCA 图具有相同的颜色
Having the same color for a silhouette plot and for a PCA plot
我的目标是在 PCA 缩减图旁边绘制轮廓图。我的想法是,为了便于理解,我希望两张图都使用相同的颜色。现在,我明白了:
我面临的问题是,在第一个图上,我一个接一个地绘制每个轮廓,并且我有一种颜色列表,而对于第二个图,所有内容都是同时绘制的。
所以我不知道如何从一种模式切换到另一种模式。
这是代码,它应该是一个工作示例。
def silhouette_PCA(data, model, n):
reduced_data = sklearn.decomposition.PCA(n_components=2).fit_transform(data)
model.fit(reduced_data)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
sample_silhouette_values = sklearn.metrics.silhouette_samples(reduced_data, model.fit_predict(reduced_data) )
y_lower = 10
for i in range(n):
ith_cluster_silhouette_values = sample_silhouette_values[ model.fit_predict(reduced_data) == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
############################### first color
color = plt.cm.nipy_spectral(float(i) / n)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
y_lower = y_upper + 10
#########################################################################################
h = .02
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax2.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
############################# here the 2nd Color
cmap=plt.cm.Paired,
aspect='auto', origin='lower')
ax2.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
plt.show()
model = sklearn.cluster.KMeans(n_clusters = 3)
data = feat_matrix
silhouette_PCA(data,model,3)
谢谢。
我已经做到了,效果很好:
def silhouette_PCA(data, model, n):
reduced_data = sklearn.decomposition.PCA(n_components=2).fit_transform(data)
model.fit(reduced_data)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
sample_silhouette_values = sklearn.metrics.silhouette_samples(reduced_data, model.fit_predict(reduced_data) )
y_lower = 10
for i in range(n):
ith_cluster_silhouette_values = sample_silhouette_values[ model.fit_predict(reduced_data) == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
############################### first color
color = plt.cm.nipy_spectral(float(i) / n)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
y_lower = y_upper + 10
list = []
for i in range(n):
list = np.append(list , plt.cm.nipy_spectral(float(i) / n) )
list = np.reshape(list, (n,4) )
cmap = mpl.colors.ListedColormap(list)
bounds= range(n)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
#########################################################################################
h = .02
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax2.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
############################# here the 2nd Color
cmap= cmap, #plt.cm.Paired,
aspect='auto', origin='lower')
ax2.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
plt.show()
model = sklearn.cluster.KMeans(n_clusters = 7)
data = feat_matrix
silhouette_PCA(data,model,7)
我的目标是在 PCA 缩减图旁边绘制轮廓图。我的想法是,为了便于理解,我希望两张图都使用相同的颜色。现在,我明白了:
我面临的问题是,在第一个图上,我一个接一个地绘制每个轮廓,并且我有一种颜色列表,而对于第二个图,所有内容都是同时绘制的。
所以我不知道如何从一种模式切换到另一种模式。
这是代码,它应该是一个工作示例。
def silhouette_PCA(data, model, n):
reduced_data = sklearn.decomposition.PCA(n_components=2).fit_transform(data)
model.fit(reduced_data)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
sample_silhouette_values = sklearn.metrics.silhouette_samples(reduced_data, model.fit_predict(reduced_data) )
y_lower = 10
for i in range(n):
ith_cluster_silhouette_values = sample_silhouette_values[ model.fit_predict(reduced_data) == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
############################### first color
color = plt.cm.nipy_spectral(float(i) / n)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
y_lower = y_upper + 10
#########################################################################################
h = .02
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax2.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
############################# here the 2nd Color
cmap=plt.cm.Paired,
aspect='auto', origin='lower')
ax2.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
plt.show()
model = sklearn.cluster.KMeans(n_clusters = 3)
data = feat_matrix
silhouette_PCA(data,model,3)
谢谢。
我已经做到了,效果很好:
def silhouette_PCA(data, model, n):
reduced_data = sklearn.decomposition.PCA(n_components=2).fit_transform(data)
model.fit(reduced_data)
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(18, 7)
sample_silhouette_values = sklearn.metrics.silhouette_samples(reduced_data, model.fit_predict(reduced_data) )
y_lower = 10
for i in range(n):
ith_cluster_silhouette_values = sample_silhouette_values[ model.fit_predict(reduced_data) == i]
ith_cluster_silhouette_values.sort()
size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i
############################### first color
color = plt.cm.nipy_spectral(float(i) / n)
ax1.fill_betweenx(np.arange(y_lower, y_upper),
0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)
y_lower = y_upper + 10
list = []
for i in range(n):
list = np.append(list , plt.cm.nipy_spectral(float(i) / n) )
list = np.reshape(list, (n,4) )
cmap = mpl.colors.ListedColormap(list)
bounds= range(n)
norm = mpl.colors.BoundaryNorm(bounds, cmap.N)
#########################################################################################
h = .02
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
ax2.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
############################# here the 2nd Color
cmap= cmap, #plt.cm.Paired,
aspect='auto', origin='lower')
ax2.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2)
plt.show()
model = sklearn.cluster.KMeans(n_clusters = 7)
data = feat_matrix
silhouette_PCA(data,model,7)