重采样(bootstrap)连续数据的数据集以解决回归问题
Resampling (boostrap) a data set of continious data for regression problem
对于回归问题,我有一个训练数据集:
- 3 个服从高斯分布的变量
- 20 个均匀分布的变量。
我所有的变量都是连续的,在 [0;1] 之间。
问题是测试数据,用于对我的回归模型进行评分的所有变量都具有均匀分布。
实际上,我在尾端分布上的结果很糟糕,所以我想对我的训练集进行过采样,以复制最稀有的行。
所以我的想法是在我的训练集上bootstrap(使用有放回抽样)以获得一组与测试集分布相同的数据。
为了做到这一点,我的想法(不知道它是否好!)是为我的 3 个变量添加 3 列间隔,并使用这些列对重采样进行分层。
示例:
一、生成数据
from scipy.stats import truncnorm
def get_truncated_normal(mean=0.5, sd=0.15, min_value=0, max_value=1):
return truncnorm(
(min_value - mean) / sd, (max_value - mean) / sd, loc=mean, scale=sd)
generator = get_truncated_normal()
import numpy as np
from sklearn.preprocessing import MinMaxScaler
S1 = generator.rvs(1000)
S2 = generator.rvs(1000)
S3 = generator.rvs(1000)
u = np.random.uniform(0, 1, 1000)
然后检查分布:
import seaborn as sns
sns.distplot(u);
sns.distplot(S2);
没关系,我会添加类别列
import pandas as pd
df = pd.DataFrame({'S1':S1,'S2':S2,'S3':S3,'Unif':u})
BINS_NUMBER = 10
df['S1_range'] = pd.cut(df.S1,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
df['S2_range'] = pd.cut(df.S2,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
df['S3_range'] = pd.cut(df.S3,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
支票
df.groupby('S1_range').size()
S1_range
(0.022025899999999998, 0.116709] 3
(0.116709, 0.210454] 15
(0.210454, 0.304199] 64
(0.304199, 0.397944] 152
(0.397944, 0.491689] 254
(0.491689, 0.585434] 217
(0.585434, 0.679179] 173
(0.679179, 0.772924] 86
(0.772924, 0.866669] 30
(0.866669, 0.960414] 6
dtype: int64
这对我有好处。
所以现在我将尝试重新采样,但它没有按预期工作
from sklearn.utils import resample
df_resampled = resample(df,replace=True,n_samples=1000, stratify=df['S1_range'])
df_resampled.groupby('S1_range').size()
S1_range
(0.022025899999999998, 0.116709] 3
(0.116709, 0.210454] 15
(0.210454, 0.304199] 64
(0.304199, 0.397944] 152
(0.397944, 0.491689] 254
(0.491689, 0.585434] 217
(0.585434, 0.679179] 173
(0.679179, 0.772924] 86
(0.772924, 0.866669] 30
(0.866669, 0.960414] 6
dtype: int64
所以它不起作用,我得到的输出分布与输入分布相同...
你能帮帮我吗?
也许这不是执行此操作的好方法?
谢谢!!
我的解决方案:
def create_sampled_data_set(n_samples_by_bin=1000,
n_bins=10,
replace=True,
save_csv=True):
"""In order to have the same distribution for S1..S3 between training
set and test set, this function will generate a new
training set resampled
Return: (X_train, y_train)
"""
def stratified_sample_df_(df, col, n_samples, replace=True):
if replace:
n = n_samples
else:
n = min(n_samples, df[col].value_counts().min())
df_ = df.groupby(col).apply(lambda x: x.sample(n, replace=replace))
df_.index = df_.index.droplevel(0)
return df_
X_train, y_train = load_data_for_train()
# merge the dataframe for the sampling. Target will be removed after
X_train = pd.merge(
X_train, y_train[['Target']], left_index=True, right_index=True)
del y_train
# build a categorical feature, from S1..S3 distribution
disc = KBinsDiscretizer(n_bins=n_bins, encode='ordinal', strategy='kmeans')
disc.fit(X_train[['S1', 'S2', 'S3']])
y_bin = disc.transform(X_train[['S1', 'S2', 'S3']])
del disc
vint = np.vectorize(np.int)
y_bin = vint(y_bin)
y_concat = []
for i in range(len(y_bin)):
a = y_bin[i, 0].astype('str')
b = y_bin[i, 1].astype('str')
c = y_bin[i, 2].astype('str')
y_concat.append(a + ';' + b + ';' + c)
del y_bin
X_train['S_Class'] = y_concat
del y_concat
X_train_resampled = stratified_sample_df_(
X_train, 'S_Class', n_samples_by_bin)
del X_train
y_train_resampled = X_train_resampled[['Target']].copy()
y_train_resampled.rename(
columns={y_train_resampled.columns[0]: 'Target'}, inplace=True)
X_train_resampled = X_train_resampled.drop(['S_Class', 'Target'], axis=1)
# save in file for further usage
if save_csv:
X_train_resampled.to_csv(
"./data/training_input_resampled.csv", sep=",")
y_train_resampled.to_csv(
"./data/training_output_resampled.csv", sep=",")
return(X_train_resampled,
y_train_resampled)
与其从头开始编写代码对连续数据进行重采样,不如利用库对回归数据进行重采样。
虽然流行的库(imbalanced-learn 等)专注于分类(分类)变量,但最近有一个 Python 库(称为 resreg - RESampling for REGression)允许您重新采样您的连续数据 (resreg GitHub page)
此外,您可能希望在正态分布变量的尾端生成合成数据点,而不是自举,因为这样做可能会产生更好的结果(请参阅 this paper)。类似于用于分类的 SMOTE,它在特征之间进行插值,您可以使用 resreg 包中的 SMOTER(用于回归的 SMOTE)在 regression/continuous 数据中生成合成值。
下面是一个示例,说明如何使用 resreg 通过几行代码实现重采样:
import numpy as np
import resreg
cl = np.percentile(y,10) # Oversample values less than the 10th percentile
ch = np.percentile(y,90) # Oversample values less than the 10th percentile
# Assign relevance scores to indicate which samples in your dataset are
# to be resampled. Values below cl and above ch are assigned a relevance
# value above 0.5, other values are assigned a relevance value above 0.5
relevance = resreg.sigmoid_relevance(X, y, cl=cl, ch=ch)
# Resample the relevant values (i.e relevance >= 0.5) by interpolating
# between nearest k-neighbors (k=5). By setting over='balance', the
# relevant values are oversampled so that the number of relevant and
# irrelevant values are equal
X_res, y_res = resreg.smoter(X, y, relevance=relevance, relevance_threshold=0.5, k=5, over='balance', random_state=0)
对于回归问题,我有一个训练数据集: - 3 个服从高斯分布的变量 - 20 个均匀分布的变量。
我所有的变量都是连续的,在 [0;1] 之间。
问题是测试数据,用于对我的回归模型进行评分的所有变量都具有均匀分布。 实际上,我在尾端分布上的结果很糟糕,所以我想对我的训练集进行过采样,以复制最稀有的行。
所以我的想法是在我的训练集上bootstrap(使用有放回抽样)以获得一组与测试集分布相同的数据。
为了做到这一点,我的想法(不知道它是否好!)是为我的 3 个变量添加 3 列间隔,并使用这些列对重采样进行分层。
示例: 一、生成数据
from scipy.stats import truncnorm
def get_truncated_normal(mean=0.5, sd=0.15, min_value=0, max_value=1):
return truncnorm(
(min_value - mean) / sd, (max_value - mean) / sd, loc=mean, scale=sd)
generator = get_truncated_normal()
import numpy as np
from sklearn.preprocessing import MinMaxScaler
S1 = generator.rvs(1000)
S2 = generator.rvs(1000)
S3 = generator.rvs(1000)
u = np.random.uniform(0, 1, 1000)
然后检查分布:
import seaborn as sns
sns.distplot(u);
sns.distplot(S2);
没关系,我会添加类别列
import pandas as pd
df = pd.DataFrame({'S1':S1,'S2':S2,'S3':S3,'Unif':u})
BINS_NUMBER = 10
df['S1_range'] = pd.cut(df.S1,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
df['S2_range'] = pd.cut(df.S2,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
df['S3_range'] = pd.cut(df.S3,
bins=BINS_NUMBER,
precision=6,
right=True,
include_lowest=True)
支票
df.groupby('S1_range').size()
S1_range
(0.022025899999999998, 0.116709] 3
(0.116709, 0.210454] 15
(0.210454, 0.304199] 64
(0.304199, 0.397944] 152
(0.397944, 0.491689] 254
(0.491689, 0.585434] 217
(0.585434, 0.679179] 173
(0.679179, 0.772924] 86
(0.772924, 0.866669] 30
(0.866669, 0.960414] 6
dtype: int64
这对我有好处。 所以现在我将尝试重新采样,但它没有按预期工作
from sklearn.utils import resample
df_resampled = resample(df,replace=True,n_samples=1000, stratify=df['S1_range'])
df_resampled.groupby('S1_range').size()
S1_range
(0.022025899999999998, 0.116709] 3
(0.116709, 0.210454] 15
(0.210454, 0.304199] 64
(0.304199, 0.397944] 152
(0.397944, 0.491689] 254
(0.491689, 0.585434] 217
(0.585434, 0.679179] 173
(0.679179, 0.772924] 86
(0.772924, 0.866669] 30
(0.866669, 0.960414] 6
dtype: int64
所以它不起作用,我得到的输出分布与输入分布相同...
你能帮帮我吗? 也许这不是执行此操作的好方法?
谢谢!!
我的解决方案:
def create_sampled_data_set(n_samples_by_bin=1000,
n_bins=10,
replace=True,
save_csv=True):
"""In order to have the same distribution for S1..S3 between training
set and test set, this function will generate a new
training set resampled
Return: (X_train, y_train)
"""
def stratified_sample_df_(df, col, n_samples, replace=True):
if replace:
n = n_samples
else:
n = min(n_samples, df[col].value_counts().min())
df_ = df.groupby(col).apply(lambda x: x.sample(n, replace=replace))
df_.index = df_.index.droplevel(0)
return df_
X_train, y_train = load_data_for_train()
# merge the dataframe for the sampling. Target will be removed after
X_train = pd.merge(
X_train, y_train[['Target']], left_index=True, right_index=True)
del y_train
# build a categorical feature, from S1..S3 distribution
disc = KBinsDiscretizer(n_bins=n_bins, encode='ordinal', strategy='kmeans')
disc.fit(X_train[['S1', 'S2', 'S3']])
y_bin = disc.transform(X_train[['S1', 'S2', 'S3']])
del disc
vint = np.vectorize(np.int)
y_bin = vint(y_bin)
y_concat = []
for i in range(len(y_bin)):
a = y_bin[i, 0].astype('str')
b = y_bin[i, 1].astype('str')
c = y_bin[i, 2].astype('str')
y_concat.append(a + ';' + b + ';' + c)
del y_bin
X_train['S_Class'] = y_concat
del y_concat
X_train_resampled = stratified_sample_df_(
X_train, 'S_Class', n_samples_by_bin)
del X_train
y_train_resampled = X_train_resampled[['Target']].copy()
y_train_resampled.rename(
columns={y_train_resampled.columns[0]: 'Target'}, inplace=True)
X_train_resampled = X_train_resampled.drop(['S_Class', 'Target'], axis=1)
# save in file for further usage
if save_csv:
X_train_resampled.to_csv(
"./data/training_input_resampled.csv", sep=",")
y_train_resampled.to_csv(
"./data/training_output_resampled.csv", sep=",")
return(X_train_resampled,
y_train_resampled)
与其从头开始编写代码对连续数据进行重采样,不如利用库对回归数据进行重采样。
虽然流行的库(imbalanced-learn 等)专注于分类(分类)变量,但最近有一个 Python 库(称为 resreg - RESampling for REGression)允许您重新采样您的连续数据 (resreg GitHub page)
此外,您可能希望在正态分布变量的尾端生成合成数据点,而不是自举,因为这样做可能会产生更好的结果(请参阅 this paper)。类似于用于分类的 SMOTE,它在特征之间进行插值,您可以使用 resreg 包中的 SMOTER(用于回归的 SMOTE)在 regression/continuous 数据中生成合成值。
下面是一个示例,说明如何使用 resreg 通过几行代码实现重采样:
import numpy as np
import resreg
cl = np.percentile(y,10) # Oversample values less than the 10th percentile
ch = np.percentile(y,90) # Oversample values less than the 10th percentile
# Assign relevance scores to indicate which samples in your dataset are
# to be resampled. Values below cl and above ch are assigned a relevance
# value above 0.5, other values are assigned a relevance value above 0.5
relevance = resreg.sigmoid_relevance(X, y, cl=cl, ch=ch)
# Resample the relevant values (i.e relevance >= 0.5) by interpolating
# between nearest k-neighbors (k=5). By setting over='balance', the
# relevant values are oversampled so that the number of relevant and
# irrelevant values are equal
X_res, y_res = resreg.smoter(X, y, relevance=relevance, relevance_threshold=0.5, k=5, over='balance', random_state=0)