pandas 在相同的 table (相同的数据帧)中,如何使用新名称和其他行值的总和对不同的行进行分组

pandas in same table (same dataframe), how to group different rows with new name and with sum of other row values

below dataframe is the output of below code i want to group rows further
train=pd.read_excel("monthly_report.xlsx", sheet_name="xy12",sep=r'\s*,\s*')
train['Date/Time Opened']=train['Date/Time Opened'].dt.month_name()
train=train.groupby(['col1', 'Date/Time Opened'])['Date/Time Opened'].count()

col1         Date/Time Opened    number
abc          April               40
             August              30
             December            25
             February            30
             January             45

xyz          April                1
             August               1
             November             3
             October              2
             September            3
pqr          March                2
             May                  4
             November             5
             October              2

现在我希望上面的格式如下所示。此后,基于此我想构建图表

abcxyz(new name)  April               41
                  August              31
                  December            25
                  February            30
                  January             45
                  September            3
                  November             3
                  October              2

pqr(new name)           
                 March                2
                 May                  4
                 November             5
                 October              2

有人可以告诉我如何将新行中的行与 diffrenet 值和其余行值的总和连接起来吗

您可以使用 Series.mask with Series.isin 来设置相同的类别:

train['col1'] = train['col1'].mask(train['col1'].isin(['abc','xyz']), 'abcxyz')

或使用 Series.replace 与字典:

train['col1'] = train['col1'].replace({'abc':'abcxyz','xyz':'abcxyz'})

...然后使用您的解决方案:

train['Date/Time Opened']=train['Date/Time Opened'].dt.month_name()
train=train.groupby(['col1', 'Date/Time Opened'])['Date/Time Opened'].count()