如何使用显示 CLD 字母的箱线图显示 Tukey 检验的结果

How to show the results of a Tukey test with boxplots showing CLD letters

我收集了 216 个人的数据。我测量了每个人体内相同 7 种物质的浓度,用 Sub1:Sub7 表示。这些物质的浓度在不同地点的个体中可能不同。我感兴趣的是可以根据这些物质的浓度将这些人分类的精细程度。我也有兴趣了解这些物质如何相互关联,因为某些物质的浓度可能会影响其他物质的浓度。我的数据集中的每个个体都由一个唯一的 ID 号表示。三个 "nested" 分组变量(位置、州和地区)可用于区分这些个体。每个州都有多个位置,多个州是更大区域的一部分。例如,位置:APNG、BLEA 和 NEAR 中的个体都在 FL,而位置中的个体:CACT、OYLE 和 PIY 都在 GA。 FL 和 GA 都在 A 区。我用这个函数进行了方差分析:

library(tidyverse)
library(multicomp)
library(multicompView)
tests <- list()
Groups <- c(1:3)
Variables <- 6:12
for(i in Groups){
  Group <- as.factor(data[[i]])
  for(j in Variables)
  {
    test_name <- paste0(names(data)[j], "_by_", names(data[i]))
    Response <- data[[j]]
    sublist <- list() 
    sublist$aov <- aov(Response ~ Group) 
    sublist$tukey <- TukeyHSD(sublist$aov) 
    sublist$multcomp <- multcompLetters(extract_p(sublist$tukey$Group)) 
    tests[[test_name]] <- sublist
  }
}
#i can access the results like this:
lapply(tests, function(x) summary(x$aov))
#and access the compact letter display results like this:
lapply(tests, function(x) x$multcomp)

使用对象 tests,我如何告诉 R 创建 TukeyHSD 结果的箱线图并显示 CLD 字母并将图粘贴到 pdf 上? 这个网站:r-graph-gallery.com/84-tukey-test.html 解释了如何做到这一点,但我无法让它与对象一起工作 tests.

这是我的数据:

> dput(data)
structure(list(Region = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
5L), .Label = c("A", "B", "C", "D", "E"), class = "factor"), 
    State = structure(c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
    7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 3L, 3L, 3L, 3L, 3L, 3L, 
    3L, 3L, 3L, 3L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 10L, 10L, 10L, 
    10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 10L, 10L, 
    10L, 10L, 10L, 10L, 10L, 10L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
    7L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 6L, 6L, 
    6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 12L, 12L, 12L, 12L, 12L, 
    12L, 12L, 12L, 12L, 12L), .Label = c("DE", "FL", "GA", "MA", 
    "MD", "ME", "NC", "NH", "NY", "SC", "VA", "VT"), class = "factor"), 
    Location = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 
    4L, 4L, 4L, 4L, 4L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 12L, 
    12L, 12L, 12L, 12L, 12L, 12L, 12L, 14L, 14L, 14L, 14L, 14L, 
    14L, 14L, 14L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 
    16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 
    17L, 17L, 17L, 17L, 17L, 20L, 20L, 20L, 20L, 20L, 20L, 22L, 
    22L, 22L, 22L, 22L, 22L, 22L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 15L, 15L, 15L, 15L, 15L, 
    15L, 15L, 15L, 15L, 15L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 
    8L, 8L, 8L, 8L, 8L, 8L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 
    11L, 11L, 11L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 
    13L, 13L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
    6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 
    5L, 5L, 5L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 
    19L, 19L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L
    ), .Label = c("APNG", "BATO", "BLEA", "CACT", "CHAG", "CHOG", 
    "COTR", "DTU", "HAB", "LOP", "MASV", "NEAR", "NGUP", "OYLE", 
    "PIRT", "PIY", "PKE", "PONO", "PPP", "ROG", "VONG", "YENQ"
    ), class = "factor"), Sex = structure(c(1L, 1L, 1L, 2L, 1L, 
    1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 
    1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 
    1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
    2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 
    2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 
    1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 
    2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 
    2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 
    1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 
    2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 
    2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 
    1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 
    2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
    2L), .Label = c("F", "M"), class = "factor"), ID = 1:216, 
    Sub1 = c(0.03, 0.03, 0.03, 0.04, 0.04, 0.03, 0.03, 0.03, 
    0.03, 0.03, 0.04, 0.03, 0.04, 0.03, 0.03, 0.03, 0.02, 0.04, 
    0.03, 0.03, 0.03, 0.02, 0.04, 0.04, 0.02, 0.03, 0.02, 0.03, 
    0.05, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 
    0.03, 0.03, 0.04, 0.03, 0.04, 0.06, 0.03, 0.03, 0.03, 0.03, 
    0.02, 0.03, 0.03, 0.03, 0.04, 0.03, 0.02, 0.02, 0.04, 0.03, 
    0.04, 0.03, 0.03, 0.03, 0.05, 0.03, 0.03, 0.04, 0.03, 0.02, 
    0.04, 0.02, 0.03, 0.02, 0.02, 0.04, 0.03, 0.02, 0.03, 0.03, 
    0.05, 0.04, 0.03, 0.02, 0.03, 0.05, 0.02, 0.04, 0.03, 0.05, 
    0.03, 0.04, 0.02, 0.03, 0.02, 0.03, 0.03, 0.03, 0.02, 0.05, 
    0.03, 0.03, 0.04, 0.02, 0.02, 0.04, 0.05, 0.03, 0.03, 0.02, 
    2.03, 2.03, 2.03, 2.04, 2.04, 2.03, 2.03, 2.03, 2.03, 2.03, 
    2.04, 2.03, 2.04, 2.03, 2.03, 2.03, 2.02, 2.04, 2.03, 2.03, 
    2.03, 2.02, 2.04, 2.04, 2.02, 2.03, 2.02, 2.03, 2.05, 2.03, 
    2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 2.03, 
    2.04, 2.03, 2.04, 2.06, 2.03, 2.03, 2.03, 2.03, 2.02, 2.03, 
    2.03, 2.03, 2.04, 2.03, 2.02, 2.02, 2.04, 2.03, 2.04, 2.03, 
    2.03, 2.03, 2.05, 2.03, 2.03, 2.04, 2.03, 2.02, 2.04, 2.02, 
    2.03, 2.02, 2.02, 2.04, 2.03, 2.02, 2.03, 2.03, 2.05, 2.04, 
    2.03, 2.02, 2.03, 2.05, 2.02, 2.04, 2.03, 2.05, 2.03, 2.04, 
    2.02, 2.03, 2.02, 2.03, 2.03, 2.03, 2.02, 2.05, 2.03, 2.03, 
    2.04, 2.02, 2.02, 2.04, 2.05, 2.03, 2.03, 2.02), Sub2 = c(0.69, 
    1.28, 1.27, 2.25, 1.05, 1.76, 1.57, 1.09, 0.68, 1.35, 0.85, 
    1.55, 0.12, 0, 0.58, 1.13, 0.1, 1.9, 0.54, 1.48, 0.8, 0.52, 
    1.76, 1.77, 1.24, 0.63, 0.63, 0.57, 0.63, 0.53, 1.32, 1.79, 
    1.16, 1.11, 1.1, 1.92, 1.06, 1.18, 0.43, 0.67, 0.75, 2.37, 
    3.93, 0.3, 2.8, 1.25, 0.9, 1.32, 0.5, 0.4, 0.72, 0.34, 0.12, 
    0.89, 0.69, 1.13, 1.22, 0.88, 4.13, 1.27, 0.62, 2.9, 2.42, 
    0.9, 0.4, 1.29, 1.61, 0.3, 1.47, 0.36, 1.27, 0.84, 1.81, 
    0.18, 0.47, 1.01, 0.85, 0.59, 1.73, 0.72, 0.5, 0.83, 0.9, 
    0.81, 0.59, 2.84, 2.24, 2.68, 1.18, 1.36, 0.84, 1.79, 1.01, 
    0.34, 0.41, 2.22, 0.51, 0.42, 1.26, 2.26, 1.79, 1.43, 1.3, 
    1.8, 2.21, 1.65, 2.39, 0.31, 2.69, 3.28, 3.27, 4.25, 3.05, 
    3.76, 3.57, 3.09, 2.68, 3.35, 2.85, 3.55, 2.12, 2, 2.58, 
    3.13, 2.1, 3.9, 2.54, 3.48, 2.8, 2.52, 3.76, 3.77, 3.24, 
    2.63, 2.63, 2.57, 2.63, 2.53, 3.32, 3.79, 3.16, 3.11, 3.1, 
    3.92, 3.06, 3.18, 2.43, 2.67, 2.75, 4.37, 5.93, 2.3, 4.8, 
    3.25, 2.9, 3.32, 2.5, 2.4, 2.72, 2.34, 2.12, 2.89, 2.69, 
    3.13, 3.22, 2.88, 6.13, 3.27, 2.62, 4.9, 4.42, 2.9, 2.4, 
    3.29, 3.61, 2.3, 3.47, 2.36, 3.27, 2.84, 3.81, 2.18, 2.47, 
    3.01, 2.85, 2.59, 3.73, 2.72, 2.5, 2.83, 2.9, 2.81, 2.59, 
    4.84, 4.24, 4.68, 3.18, 3.36, 2.84, 3.79, 3.01, 2.34, 2.41, 
    4.22, 2.51, 2.42, 3.26, 4.26, 3.79, 3.43, 3.3, 3.8, 4.21, 
    3.65, 4.39, 2.31), Sub3 = c(1.32, 0.19, 0.27, 0.73, 0.41, 
    0.37, 0.89, 1.35, 0.49, 1.32, 0.69, 0, 0.57, 0.24, 0.23, 
    0.71, 0, 0, 0, 0.58, 0.32, 1.1, 0.45, 0.61, 0.38, 0.3, 0.01, 
    0.06, 0.48, 0.62, 0.64, 1.96, 0.61, 0.43, 0.25, 0.34, 0.17, 
    0.57, 0.1, 0.6, 1.07, 0.44, 0.12, 0.55, 0.08, 0.56, 0.59, 
    0.66, 0.44, 0.58, 0.75, 0.99, 0.77, 0.57, 0.35, 0.18, 0.16, 
    0.31, 0.04, 0.17, 0.46, 0.19, 0.8, 0.61, 1.14, 0.3, 0.08, 
    0.25, 0.78, 1.07, 0.38, 0.17, 0.42, 0.48, 0.55, 0.74, 2.98, 
    1.96, 0.51, 0.63, 0, 0.52, 0.32, 0.23, 0.31, 0.09, 0.06, 
    0.26, 0.23, 0.58, 1.49, 0.46, 0.33, 0.37, 1.16, 0.91, 0.41, 
    0.72, 0.2, 0.84, 0.71, 0.56, 0.34, 0.68, 0.81, 0.52, 0.78, 
    0.19, 3.32, 2.19, 2.27, 2.73, 2.41, 2.37, 2.89, 3.35, 2.49, 
    3.32, 2.69, 2, 2.57, 2.24, 2.23, 2.71, 2, 2, 2, 2.58, 2.32, 
    3.1, 2.45, 2.61, 2.38, 2.3, 2.01, 2.06, 2.48, 2.62, 2.64, 
    3.96, 2.61, 2.43, 2.25, 2.34, 2.17, 2.57, 2.1, 2.6, 3.07, 
    2.44, 2.12, 2.55, 2.08, 2.56, 2.59, 2.66, 2.44, 2.58, 2.75, 
    2.99, 2.77, 2.57, 2.35, 2.18, 2.16, 2.31, 2.04, 2.17, 2.46, 
    2.19, 2.8, 2.61, 3.14, 2.3, 2.08, 2.25, 2.78, 3.07, 2.38, 
    2.17, 2.42, 2.48, 2.55, 2.74, 4.98, 3.96, 2.51, 2.63, 2, 
    2.52, 2.32, 2.23, 2.31, 2.09, 2.06, 2.26, 2.23, 2.58, 3.49, 
    2.46, 2.33, 2.37, 3.16, 2.91, 2.41, 2.72, 2.2, 2.84, 2.71, 
    2.56, 2.34, 2.68, 2.81, 2.52, 2.78, 2.19), Sub4 = c(0.63, 
    0.05, 0.2, 0.41, 0.43, 0.54, 0.26, 0.78, 0.13, 0.8, 0.47, 
    0.65, 0, 0.22, 0.45, 0.85, 0.47, 0, 0.62, 0.59, 0.14, 0.8, 
    0.9, 0.88, 0.56, 0.56, 0.47, 0.24, 0.62, 1.77, 0.56, 0.99, 
    0.21, 0.9, 0.62, 0.58, 0.41, 0.97, 0.2, 0.9, 0.68, 0.52, 
    0.14, 1.27, 0.63, 0.51, 0.12, 0.61, 0.31, 0.43, 0.62, 1.18, 
    0.95, 0.59, 0.39, 0.26, 0.53, 0.77, 0.4, 0.39, 0, 0.19, 0.82, 
    1.1, 0.46, 0.25, 0.29, 0.2, 2.01, 0.36, 0.62, 0.54, 0.48, 
    0.87, 0.66, 1.46, 2.59, 1.37, 1.28, 0.99, 0.71, 0.32, 0.64, 
    0.66, 0.47, 0.48, 0.38, 0.67, 0.18, 1.02, 0.54, 0.53, 0.25, 
    0.43, 1.02, 0.58, 0.58, 0.48, 0.2, 0.7, 0.38, 0.28, 0.65, 
    1.21, 1.03, 0.38, 0.6, 0.44, 2.63, 2.05, 2.2, 2.41, 2.43, 
    2.54, 2.26, 2.78, 2.13, 2.8, 2.47, 2.65, 2, 2.22, 2.45, 2.85, 
    2.47, 2, 2.62, 2.59, 2.14, 2.8, 2.9, 2.88, 2.56, 2.56, 2.47, 
    2.24, 2.62, 3.77, 2.56, 2.99, 2.21, 2.9, 2.62, 2.58, 2.41, 
    2.97, 2.2, 2.9, 2.68, 2.52, 2.14, 3.27, 2.63, 2.51, 2.12, 
    2.61, 2.31, 2.43, 2.62, 3.18, 2.95, 2.59, 2.39, 2.26, 2.53, 
    2.77, 2.4, 2.39, 2, 2.19, 2.82, 3.1, 2.46, 2.25, 2.29, 2.2, 
    4.01, 2.36, 2.62, 2.54, 2.48, 2.87, 2.66, 3.46, 4.59, 3.37, 
    3.28, 2.99, 2.71, 2.32, 2.64, 2.66, 2.47, 2.48, 2.38, 2.67, 
    2.18, 3.02, 2.54, 2.53, 2.25, 2.43, 3.02, 2.58, 2.58, 2.48, 
    2.2, 2.7, 2.38, 2.28, 2.65, 3.21, 3.03, 2.38, 2.6, 2.44), 
    Sub5 = c(1.14, 1.38, 1.5, 1.43, 1.65, 1.34, 1.29, 1.72, 1.32, 
    1.17, 1.19, 1.35, 1.34, 1.06, 1.24, 1.33, 1.2, 1.31, 1.29, 
    1.37, 1.42, 1.08, 1.77, 1.32, 1.2, 1.14, 1.48, 0.98, 1.33, 
    1.65, 1.24, 1.43, 1.41, 1.2, 1.42, 1.09, 1.04, 1.57, 0.78, 
    1.37, 0.99, 1.4, 1.13, 1.34, 1.35, 1.23, 0.93, 0.94, 1.02, 
    1.16, 1.08, 0.96, 1.33, 1.19, 1.25, 1.44, 1.62, 1.27, 1.4, 
    1.4, 1.29, 1.53, 1.43, 1.33, 1.25, 1.82, 1.45, 1.36, 1.38, 
    1.34, 1.29, 1.86, 1.15, 1.31, 1.21, 1.23, 1.42, 1.57, 1.23, 
    0.99, 1.33, 1.74, 1.03, 1.33, 1.41, 1.01, 0.97, 1.46, 1.55, 
    1.04, 1.22, 1.19, 1.74, 1.64, 1.35, 1.34, 1.21, 1.55, 1.31, 
    1.5, 1.45, 1.21, 0.83, 1.17, 1.25, 1.54, 1.5, 1.11, 3.14, 
    3.38, 3.5, 3.43, 3.65, 3.34, 3.29, 3.72, 3.32, 3.17, 3.19, 
    3.35, 3.34, 3.06, 3.24, 3.33, 3.2, 3.31, 3.29, 3.37, 3.42, 
    3.08, 3.77, 3.32, 3.2, 3.14, 3.48, 2.98, 3.33, 3.65, 3.24, 
    3.43, 3.41, 3.2, 3.42, 3.09, 3.04, 3.57, 2.78, 3.37, 2.99, 
    3.4, 3.13, 3.34, 3.35, 3.23, 2.93, 2.94, 3.02, 3.16, 3.08, 
    2.96, 3.33, 3.19, 3.25, 3.44, 3.62, 3.27, 3.4, 3.4, 3.29, 
    3.53, 3.43, 3.33, 3.25, 3.82, 3.45, 3.36, 3.38, 3.34, 3.29, 
    3.86, 3.15, 3.31, 3.21, 3.23, 3.42, 3.57, 3.23, 2.99, 3.33, 
    3.74, 3.03, 3.33, 3.41, 3.01, 2.97, 3.46, 3.55, 3.04, 3.22, 
    3.19, 3.74, 3.64, 3.35, 3.34, 3.21, 3.55, 3.31, 3.5, 3.45, 
    3.21, 2.83, 3.17, 3.25, 3.54, 3.5, 3.11), Sub6 = c(0.2, 0.15, 
    0.16, 0.14, 0.19, 0.12, 0.14, 0.35, 0.29, 0.25, 0.06, 0.16, 
    0.18, 0.65, 0.18, 0.12, 0.42, 0.09, 0.13, 0.12, 0.22, 0.49, 
    0.18, 0.11, 0.29, 0.16, 0.18, 0.15, 0.46, 0.19, 0.15, 0.19, 
    0.1, 0.09, 0.11, 0.14, 0.1, 0.31, 0.53, 0.32, 0.23, 0.18, 
    0.14, 0.38, 0.19, 0.1, 0.14, 0.08, 0.21, 0.13, 0.08, 0.08, 
    0.26, 0.14, 0.17, 0.09, 0.09, 0.22, 0.26, 0.09, 0.3, 0.16, 
    0.17, 0.09, 0.12, 0.17, 0.14, 0.34, 0.12, 0.21, 0.1, 0.27, 
    0.11, 0.13, 0.15, 0.17, 0.21, 0.16, 0.12, 0.36, 0.16, 0.17, 
    0.27, 0.32, 0.15, 0.13, 0.14, 0.15, 0.1, 0.26, 0.25, 0.08, 
    0.25, 0.19, 0.38, 0.08, 0.64, 0.71, 0.1, 0.18, 0.12, 0.13, 
    0.1, 1.17, 0.14, 0.19, 0.14, 0.24, 2.2, 2.15, 2.16, 2.14, 
    2.19, 2.12, 2.14, 2.35, 2.29, 2.25, 2.06, 2.16, 2.18, 2.65, 
    2.18, 2.12, 2.42, 2.09, 2.13, 2.12, 2.22, 2.49, 2.18, 2.11, 
    2.29, 2.16, 2.18, 2.15, 2.46, 2.19, 2.15, 2.19, 2.1, 2.09, 
    2.11, 2.14, 2.1, 2.31, 2.53, 2.32, 2.23, 2.18, 2.14, 2.38, 
    2.19, 2.1, 2.14, 2.08, 2.21, 2.13, 2.08, 2.08, 2.26, 2.14, 
    2.17, 2.09, 2.09, 2.22, 2.26, 2.09, 2.3, 2.16, 2.17, 2.09, 
    2.12, 2.17, 2.14, 2.34, 2.12, 2.21, 2.1, 2.27, 2.11, 2.13, 
    2.15, 2.17, 2.21, 2.16, 2.12, 2.36, 2.16, 2.17, 2.27, 2.32, 
    2.15, 2.13, 2.14, 2.15, 2.1, 2.26, 2.25, 2.08, 2.25, 2.19, 
    2.38, 2.08, 2.64, 2.71, 2.1, 2.18, 2.12, 2.13, 2.1, 3.17, 
    2.14, 2.19, 2.14, 2.24), Sub7 = c(0.01, 0, 0, 0.01, 0, 0, 
    0.01, 0.01, 0.02, 0.03, 0.01, 0, 0.03, 0, 0.02, 0, 0, 0, 
    0.01, 0.03, 0.03, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0, 
    0, 0.05, 0.02, 0.04, 0.02, 0, 0.02, 0.02, 0.02, 0.04, 0.01, 
    0.02, 0.04, 0.02, 0.01, 0.01, 0.01, 0.01, 0.03, 0.02, 0, 
    0.02, 0.05, 0.14, 0, 0.01, 0, 0.01, 0.01, 0, 0.01, 0.02, 
    0.01, 0.02, 0.01, 0.03, 0.05, 0.06, 0.03, 0.02, 0.11, 0.05, 
    0.02, 0.02, 0, 0.01, 0, 0.01, 0.06, 0.04, 0.02, 0.02, 0, 
    0.02, 0.01, 0.02, 0.01, 0, 0.01, 0.01, 0.02, 0.01, 0.02, 
    0.01, 0, 0.01, 0.06, 0.01, 0.02, 0.01, 0.01, 0.03, 0.02, 
    0.03, 0.03, 0.02, 0.09, 0, 0.19, 0.02, 2.01, 2, 2, 2.01, 
    2, 2, 2.01, 2.01, 2.02, 2.03, 2.01, 2, 2.03, 2, 2.02, 2, 
    2, 2, 2.01, 2.03, 2.03, 2.02, 2.02, 2.02, 2.01, 2.01, 2.01, 
    2, 2, 2.05, 2.02, 2.04, 2.02, 2, 2.02, 2.02, 2.02, 2.04, 
    2.01, 2.02, 2.04, 2.02, 2.01, 2.01, 2.01, 2.01, 2.03, 2.02, 
    2, 2.02, 2.05, 2.14, 2, 2.01, 2, 2.01, 2.01, 2, 2.01, 2.02, 
    2.01, 2.02, 2.01, 2.03, 2.05, 2.06, 2.03, 2.02, 2.11, 2.05, 
    2.02, 2.02, 2, 2.01, 2, 2.01, 2.06, 2.04, 2.02, 2.02, 2, 
    2.02, 2.01, 2.02, 2.01, 2, 2.01, 2.01, 2.02, 2.01, 2.02, 
    2.01, 2, 2.01, 2.06, 2.01, 2.02, 2.01, 2.01, 2.03, 2.02, 
    2.03, 2.03, 2.02, 2.09, 2, 2.19, 2.02)), class = "data.frame", row.names = c(NA, 
-216L))

我认为您的 tests 对象的问题在于它包含太多信息以弄清楚如何绘制它。

在这里,我只关注 Regions 列,但您可以将相同的工作流程应用于数据集的其他分类列。

1) 我们需要为每种物质获取与每个区域关联的标签(字母),所以回收你的loop,我这样做了:

library(multcomp)
library(multcompView)
Labels_box = NULL
Group <- as.factor(data[,"Region"])
for(j in 6:12)
{
  Response <- data[, j]
  TUKEY <- TukeyHSD(aov(lm(Response ~ Group)))
  MultComp <- multcompLetters(extract_p(TUKEY$Group))
  Region <- names(MultComp$Letters)
  Labels <- MultComp$Letters

  df <- data.frame(Region, Labels)
  df$Substance <- colnames(data)[j]
  if(j == 1){Labels_box = df}
  else{Labels_box = rbind(Labels_box,df)}
}

现在,数据集 Labels_box 应该如下所示:

head(Labels_box)
   Region Labels Substance
B       B      a      Sub1
C       C      b      Sub1
D       D      b      Sub1
E       E      b      Sub1
A       A      a      Sub1
B1      B      a      Sub2

2) 接下来,为了将它们添加到每个箱线图的顶部,我们必须为每个标签定义 y 位置。因此,我们将使用 dplyrtidyr:

计算每种物质在每个区域的最大值
library(tidyverse)
Max_Val <- data %>% pivot_longer(., cols = starts_with("Sub"), names_to = "Substance", values_to = "Value") %>%
  group_by(Region, Substance) %>% summarise(MAX = max(Value)+0.2)

# A tibble: 6 x 3
# Groups:   Region [1]
  Region Substance   MAX
  <fct>  <chr>     <dbl>
1 A      Sub1       0.26
2 A      Sub2       4.13
3 A      Sub3       1.55
4 A      Sub4       2.21
5 A      Sub5       2.06
6 A      Sub6       0.85

我们使用 left_join:

合并 Labels_boxMax_Val 数据集
Labels_box <- left_join(Labels_box, Max_Val, by = c("Region" = "Region", "Substance" = "Substance"))

  Region Labels Substance  MAX
1      B      a      Sub1 0.25
2      C      b      Sub1 2.25
3      D      b      Sub1 2.26
4      E      b      Sub1 2.25
5      A      a      Sub1 0.26
6      B      a      Sub2 4.33

3) 最后,我们需要以长格式重塑您 data 中每种物质的所有值,以匹配 ggplot 使用的语法。为此,我们可以重新使用 2):

中看到的 pivot_longer 函数
library(tidyverse)
data_box <- data %>% pivot_longer(., cols = starts_with("Sub"), names_to = "Substance", values_to = "Value")

# A tibble: 6 x 7
  Region State Location Sex      ID Substance Value
  <fct>  <fct> <fct>    <fct> <int> <chr>     <dbl>
1 A      FL    APNG     F         1 Sub1       0.03
2 A      FL    APNG     F         1 Sub2       0.69
3 A      FL    APNG     F         1 Sub3       1.32
4 A      FL    APNG     F         1 Sub4       0.63
5 A      FL    APNG     F         1 Sub5       1.14
6 A      FL    APNG     F         1 Sub6       0.2 

我们几乎准备好了,但是为了设置一个由 Tukey 测试识别的配色组,我们需要在我们的 data_box 上添加标签。 为此,我们可以做一个 left_join:

data_box <- left_join(data_box,Labels_box, by =  c("Region" = "Region", "Substance" = "Substance"))

# A tibble: 6 x 9
  Region State Location Sex      ID Substance Value Labels   MAX
  <fct>  <fct> <fct>    <fct> <int> <chr>     <dbl> <fct>  <dbl>
1 A      FL    APNG     F         1 Sub1       0.03 a       0.26
2 A      FL    APNG     F         1 Sub2       0.69 a       4.13
3 A      FL    APNG     F         1 Sub3       1.32 a       1.55
4 A      FL    APNG     F         1 Sub4       0.63 a       2.21
5 A      FL    APNG     F         1 Sub5       1.14 a       2.06
6 A      FL    APNG     F         1 Sub6       0.2  a       0.85

4) 现在,我们准备绘制所有内容:

library(ggplot2)
ggplot(data_box, aes(x = Region, y = Value, fill = Labels))+
  geom_boxplot()+
  geom_text(data = Labels_box,aes( x = Region, y = MAX, label = Labels))+
  facet_grid(.~Substance, scales = "free")

你得到这个:

看起来满意吗?