使用 CreateML 创建文本分类器模型时接收,"An error was thrown and was not caught: The validation data provided must contain ..."
Receiving, "An error was thrown and was not caught: The validation data provided must contain ..." when creating a Text Classifier Model with CreateML
我正在使用 Playground 使用 CreateML 创建文本分类器模型并不断收到错误消息:
Playground execution terminated: An error was thrown and was not caught:
▿ The validation data provided must contain class.
▿ type : 1 element
- reason : "The validation data provided must contain class."
我的代码比较简单,使用数据table中的两列。 textColumn 被标记为 "text" 并且 labelColumn 被标记为 "class":
import Cocoa
import CreateML
let data = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/ ... .csv"))
let(trainingData, testingData) = data.randomSplit(by: 0.8, seed: 5)
let sentimentClassifier = try MLTextClassifier(trainingData: trainingData, textColumn: "text", labelColumn: "class")
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "text", labelColumn: "class")
let evaluationAccuracy = (1.0 - evaluationMetrics.classificationError) * 100
我能找到的与 Apple Developer Documentation 中提供的代码之间的唯一区别是
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "text", labelColumn: "class")
他们的文档是:
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData)
如果我尝试使用 Apple Developer Documentation 中的行,Xcode 的 11.2.1 版会失败。
在此先感谢您提供的任何帮助。
试试这个!对我有用
let data = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/justinmacbook/Desktop/twitter-sanders-apple3.csv"))
let (trainingData, testingData) = data.randomSplit(by: 0.8, seed: 5 )
let sentimentClassifier = try MLTextClassifier(trainingData: trainingData, textColumn: "class", labelColumn: "text")
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "class", labelColumn: "text")
let evaluationAccuracy = (1.0 - evaluationMetrics.classificationError) * 100
这是对我有用的解决方案。我相信这个原始代码只适用于 OSX 10.15+
import Cocoa
import CreateML
import NaturalLanguage
let data = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/m0a04y6/Desktop/iOS/ML/twitter-sanders-apple3.csv"))
let (trainingData, testingData) = data.randomSplit(by: 0.8, seed: 5)
let parameters = MLTextClassifier.ModelParameters.init(validationData: trainingData, algorithm: MLTextClassifier.ModelAlgorithmType.maxEnt(revision: 1), language: NLLanguage.english, textColumnValidationData: "text", labelColumnValidationData: "class")
let sentimentClassifier = try MLTextClassifier(trainingData: trainingData, textColumn: "text", labelColumn: "class", parameters: parameters)
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "text", labelColumn: "class") //Training accuracy as a percentage
let evaluationAccuracy = (1.0 - evaluationMetrics.classificationError) * 100
print(evaluationAccuracy)
let metadata = MLModelMetadata(author: "Madhur Ahuja", shortDescription: "A model trained to classify movie review sentiment", version: "1.0")
try sentimentClassifier.write(to: URL(fileURLWithPath: "/Users/m0a04y6/Desktop/iOS/ML/sentiment.mlmodel"), metadata: metadata)
我正在使用 Playground 使用 CreateML 创建文本分类器模型并不断收到错误消息:
Playground execution terminated: An error was thrown and was not caught:
▿ The validation data provided must contain class.
▿ type : 1 element
- reason : "The validation data provided must contain class."
我的代码比较简单,使用数据table中的两列。 textColumn 被标记为 "text" 并且 labelColumn 被标记为 "class":
import Cocoa
import CreateML
let data = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/ ... .csv"))
let(trainingData, testingData) = data.randomSplit(by: 0.8, seed: 5)
let sentimentClassifier = try MLTextClassifier(trainingData: trainingData, textColumn: "text", labelColumn: "class")
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "text", labelColumn: "class")
let evaluationAccuracy = (1.0 - evaluationMetrics.classificationError) * 100
我能找到的与 Apple Developer Documentation 中提供的代码之间的唯一区别是
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "text", labelColumn: "class")
他们的文档是:
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData)
如果我尝试使用 Apple Developer Documentation 中的行,Xcode 的 11.2.1 版会失败。
在此先感谢您提供的任何帮助。
试试这个!对我有用
let data = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/justinmacbook/Desktop/twitter-sanders-apple3.csv"))
let (trainingData, testingData) = data.randomSplit(by: 0.8, seed: 5 )
let sentimentClassifier = try MLTextClassifier(trainingData: trainingData, textColumn: "class", labelColumn: "text")
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "class", labelColumn: "text")
let evaluationAccuracy = (1.0 - evaluationMetrics.classificationError) * 100
这是对我有用的解决方案。我相信这个原始代码只适用于 OSX 10.15+
import Cocoa
import CreateML
import NaturalLanguage
let data = try MLDataTable(contentsOf: URL(fileURLWithPath: "/Users/m0a04y6/Desktop/iOS/ML/twitter-sanders-apple3.csv"))
let (trainingData, testingData) = data.randomSplit(by: 0.8, seed: 5)
let parameters = MLTextClassifier.ModelParameters.init(validationData: trainingData, algorithm: MLTextClassifier.ModelAlgorithmType.maxEnt(revision: 1), language: NLLanguage.english, textColumnValidationData: "text", labelColumnValidationData: "class")
let sentimentClassifier = try MLTextClassifier(trainingData: trainingData, textColumn: "text", labelColumn: "class", parameters: parameters)
let evaluationMetrics = sentimentClassifier.evaluation(on: testingData, textColumn: "text", labelColumn: "class") //Training accuracy as a percentage
let evaluationAccuracy = (1.0 - evaluationMetrics.classificationError) * 100
print(evaluationAccuracy)
let metadata = MLModelMetadata(author: "Madhur Ahuja", shortDescription: "A model trained to classify movie review sentiment", version: "1.0")
try sentimentClassifier.write(to: URL(fileURLWithPath: "/Users/m0a04y6/Desktop/iOS/ML/sentiment.mlmodel"), metadata: metadata)