3D 绘图:x 轴上的平滑绘图
3D plot: smooth plot on x axis
我有一个 3D 多边形图并希望在 y 轴上平滑该图(即我希望它看起来像 'slices of a surface plot')。
考虑这个 MWE(取自 here):
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
import numpy as np
from scipy.stats import norm
fig = plt.figure()
ax = fig.gca(projection='3d')
xs = np.arange(-10, 10, 2)
verts = []
zs = [0.0, 1.0, 2.0, 3.0]
for z in zs:
ys = np.random.rand(len(xs))
ys[0], ys[-1] = 0, 0
verts.append(list(zip(xs, ys)))
poly = PolyCollection(verts, facecolors=[mcolors.to_rgba('r', alpha=0.6),
mcolors.to_rgba('g', alpha=0.6),
mcolors.to_rgba('b', alpha=0.6),
mcolors.to_rgba('y', alpha=0.6)])
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel('X')
ax.set_xlim3d(-10, 10)
ax.set_ylabel('Y')
ax.set_ylim3d(-1, 4)
ax.set_zlabel('Z')
ax.set_zlim3d(0, 1)
plt.show()
现在,我想用正态分布替换这四个图(以理想地形成连续线)。
我在这里创建了发行版:
def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
""" generates the x space betwee lwr_bound and upr_bound so that it has n intermediary steps """
xs = np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n) # x space -- number of points on l/r dimension
return(xs)
xs = get_xs()
dists = [1, 2, 3, 4]
def get_distribution_params(list_):
""" generates the distribution parameters (mu and sigma) for len(list_) distributions"""
mus = []
sigmas = []
for i in range(len(dists)):
mus.append(round((i + 1) + 0.1 * np.random.randint(0,10), 3))
sigmas.append(round((i + 1) * .01 * np.random.randint(0,10), 3))
return mus, sigmas
mus, sigmas = get_distribution_params(dists)
def get_distributions(list_, xs, mus, sigmas):
""" generates len(list_) normal distributions, with different mu and sigma values """
distributions = [] # distributions
for i in range(len(list_)):
x_ = xs
z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
distributions.append(list(zip(x_, z_)))
#print(x_[60], z_[60])
return distributions
distributions = get_distributions(list_ = dists, xs = xs, mus = mus, sigmas = sigmas)
但是将它们添加到代码中(使用 poly = PolyCollection(distributions, ...)
和 ax.add_collection3d(poly, zs=distributions, zdir='z')
抛出 ValueError
(ValueError: input operand has more dimensions than allowed by the axis remapping
) 我无法解决。
使用 ax.add_collection3d(poly, zs=dists, zdir='z')
而不是 ax.add_collection3d(poly, zs=distributions, zdir='z')
应该可以解决问题。
此外,您可能想要替换
def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
""" generates the x space betwee lwr_bound and upr_bound so that it has n intermediary steps """
xs = np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n) # x space -- number of points on l/r dimension
return(xs)
xs = get_xs()
来自
xs = np.linspace(-4, 4, 80)
此外,我认为scale = sigmas[0]
实际上应该是scale = sigmas[i]
行
z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
最后,我认为您应该适当调整 xlim
、ylim
和 zlim
,因为您交换了 y
和 z
的维度与参考代码比较时绘制并更改其比例。
错误是由将 distributions
传递给 zs
引起的,其中 zs
期望当 PolyCollection
中的 verts
具有形状 MxNx2 传递给 zs
的对象具有形状 M。所以当它到达这个检查
cpdef ndarray broadcast_to(ndarray array, shape):
# ...
if array.ndim < len(shape):
raise ValueError(
'input operand has more dimensions than allowed by the axis '
'remapping')
# ...
在底层 numpy 代码中,它失败了。我相信这是因为预期的维数 (array.ndim
) 小于 zs
(len(shape)
) 的维数。它期望一个形状为 (4,)
的数组,但收到一个形状为 (4, 80, 2)
.
的数组
这个错误可以通过使用正确形状的数组来解决 - 例如来自原始示例的 zs
或来自您的代码的 dists
。使用 zs=dists
并将 x
、y
和 z
的轴限制调整为 [0,5]
给出
这看起来有点奇怪,原因有二:
z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
中有一个拼写错误,它给所有分布提供了相同的 sigma,它应该是 z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[i])
- 观察几何:分布以正
xz
平面为基础,这也是我们正在观察的平面。
通过 ax.view_init
更改观察几何将产生更清晰的绘图:
编辑
这是生成所示图的完整代码,
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
from scipy.stats import norm
np.random.seed(8)
def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
return np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n)
def get_distribution_params(list_):
mus = [round((i+1) + 0.1 * np.random.randint(0,10), 3) for i in range(len(dists))]
sigmas = [round((i+1) * .01 * np.random.randint(0,10), 3) for i in range(len(dists))]
return mus, sigmas
def get_distributions(list_, xs, mus, sigmas):
return [list(zip(xs, norm.pdf(xs, loc=mus[i], scale=sigmas[i] if sigmas[i] != 0.0
else 0.1))) for i in range(len(list_))]
dists = [1, 2, 3, 4]
xs = get_xs()
mus, sigmas = get_distribution_params(dists)
distributions = get_distributions(dists, xs, mus, sigmas)
fc = [mcolors.to_rgba('r', alpha=0.6), mcolors.to_rgba('g', alpha=0.6),
mcolors.to_rgba('b', alpha=0.6), mcolors.to_rgba('y', alpha=0.6)]
poly = PolyCollection(distributions, fc=fc)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.add_collection3d(poly, zs=np.array(dists).astype(float), zdir='z')
ax.view_init(azim=115)
ax.set_zlim([0, 5])
ax.set_ylim([0, 5])
ax.set_xlim([0, 5])
我基于您在问题中提供的代码,但为了简洁起见并与通常的样式更加一致进行了一些修改。
注意 - 根据np.random.seed()
,您给出的示例代码将失败,为了确保它有效,我在调用norm.pdf
确保比例不为零:scale = sigma[i] if sigma[i] != 0.0 else 0.1
。
我有一个 3D 多边形图并希望在 y 轴上平滑该图(即我希望它看起来像 'slices of a surface plot')。
考虑这个 MWE(取自 here):
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
from matplotlib import colors as mcolors
import numpy as np
from scipy.stats import norm
fig = plt.figure()
ax = fig.gca(projection='3d')
xs = np.arange(-10, 10, 2)
verts = []
zs = [0.0, 1.0, 2.0, 3.0]
for z in zs:
ys = np.random.rand(len(xs))
ys[0], ys[-1] = 0, 0
verts.append(list(zip(xs, ys)))
poly = PolyCollection(verts, facecolors=[mcolors.to_rgba('r', alpha=0.6),
mcolors.to_rgba('g', alpha=0.6),
mcolors.to_rgba('b', alpha=0.6),
mcolors.to_rgba('y', alpha=0.6)])
poly.set_alpha(0.7)
ax.add_collection3d(poly, zs=zs, zdir='y')
ax.set_xlabel('X')
ax.set_xlim3d(-10, 10)
ax.set_ylabel('Y')
ax.set_ylim3d(-1, 4)
ax.set_zlabel('Z')
ax.set_zlim3d(0, 1)
plt.show()
现在,我想用正态分布替换这四个图(以理想地形成连续线)。
我在这里创建了发行版:
def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
""" generates the x space betwee lwr_bound and upr_bound so that it has n intermediary steps """
xs = np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n) # x space -- number of points on l/r dimension
return(xs)
xs = get_xs()
dists = [1, 2, 3, 4]
def get_distribution_params(list_):
""" generates the distribution parameters (mu and sigma) for len(list_) distributions"""
mus = []
sigmas = []
for i in range(len(dists)):
mus.append(round((i + 1) + 0.1 * np.random.randint(0,10), 3))
sigmas.append(round((i + 1) * .01 * np.random.randint(0,10), 3))
return mus, sigmas
mus, sigmas = get_distribution_params(dists)
def get_distributions(list_, xs, mus, sigmas):
""" generates len(list_) normal distributions, with different mu and sigma values """
distributions = [] # distributions
for i in range(len(list_)):
x_ = xs
z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
distributions.append(list(zip(x_, z_)))
#print(x_[60], z_[60])
return distributions
distributions = get_distributions(list_ = dists, xs = xs, mus = mus, sigmas = sigmas)
但是将它们添加到代码中(使用 poly = PolyCollection(distributions, ...)
和 ax.add_collection3d(poly, zs=distributions, zdir='z')
抛出 ValueError
(ValueError: input operand has more dimensions than allowed by the axis remapping
) 我无法解决。
使用 ax.add_collection3d(poly, zs=dists, zdir='z')
而不是 ax.add_collection3d(poly, zs=distributions, zdir='z')
应该可以解决问题。
此外,您可能想要替换
def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
""" generates the x space betwee lwr_bound and upr_bound so that it has n intermediary steps """
xs = np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n) # x space -- number of points on l/r dimension
return(xs)
xs = get_xs()
来自
xs = np.linspace(-4, 4, 80)
此外,我认为scale = sigmas[0]
实际上应该是scale = sigmas[i]
行
z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
最后,我认为您应该适当调整 xlim
、ylim
和 zlim
,因为您交换了 y
和 z
的维度与参考代码比较时绘制并更改其比例。
错误是由将 distributions
传递给 zs
引起的,其中 zs
期望当 PolyCollection
中的 verts
具有形状 MxNx2 传递给 zs
的对象具有形状 M。所以当它到达这个检查
cpdef ndarray broadcast_to(ndarray array, shape):
# ...
if array.ndim < len(shape):
raise ValueError(
'input operand has more dimensions than allowed by the axis '
'remapping')
# ...
在底层 numpy 代码中,它失败了。我相信这是因为预期的维数 (array.ndim
) 小于 zs
(len(shape)
) 的维数。它期望一个形状为 (4,)
的数组,但收到一个形状为 (4, 80, 2)
.
这个错误可以通过使用正确形状的数组来解决 - 例如来自原始示例的 zs
或来自您的代码的 dists
。使用 zs=dists
并将 x
、y
和 z
的轴限制调整为 [0,5]
给出
这看起来有点奇怪,原因有二:
z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[0])
中有一个拼写错误,它给所有分布提供了相同的 sigma,它应该是z_ = norm.pdf(xs, loc = mus[i], scale = sigmas[i])
- 观察几何:分布以正
xz
平面为基础,这也是我们正在观察的平面。
通过 ax.view_init
更改观察几何将产生更清晰的绘图:
编辑
这是生成所示图的完整代码,
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import PolyCollection
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import numpy as np
from scipy.stats import norm
np.random.seed(8)
def get_xs(lwr_bound = -4, upr_bound = 4, n = 80):
return np.arange(lwr_bound, upr_bound, (upr_bound - lwr_bound) / n)
def get_distribution_params(list_):
mus = [round((i+1) + 0.1 * np.random.randint(0,10), 3) for i in range(len(dists))]
sigmas = [round((i+1) * .01 * np.random.randint(0,10), 3) for i in range(len(dists))]
return mus, sigmas
def get_distributions(list_, xs, mus, sigmas):
return [list(zip(xs, norm.pdf(xs, loc=mus[i], scale=sigmas[i] if sigmas[i] != 0.0
else 0.1))) for i in range(len(list_))]
dists = [1, 2, 3, 4]
xs = get_xs()
mus, sigmas = get_distribution_params(dists)
distributions = get_distributions(dists, xs, mus, sigmas)
fc = [mcolors.to_rgba('r', alpha=0.6), mcolors.to_rgba('g', alpha=0.6),
mcolors.to_rgba('b', alpha=0.6), mcolors.to_rgba('y', alpha=0.6)]
poly = PolyCollection(distributions, fc=fc)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.add_collection3d(poly, zs=np.array(dists).astype(float), zdir='z')
ax.view_init(azim=115)
ax.set_zlim([0, 5])
ax.set_ylim([0, 5])
ax.set_xlim([0, 5])
我基于您在问题中提供的代码,但为了简洁起见并与通常的样式更加一致进行了一些修改。
注意 - 根据np.random.seed()
,您给出的示例代码将失败,为了确保它有效,我在调用norm.pdf
确保比例不为零:scale = sigma[i] if sigma[i] != 0.0 else 0.1
。