(速度挑战)根据欧几里德距离计算两个矩阵的行之间的距离矩阵的任何更快的方法?

(Speed Challenge) Any faster method to calculate distance matrix between rows of two matrices, in terms of Euclidean distance?

首先,这不是的问题。

假设我有两个矩阵 xy,例如

set.seed(1)
x <- matrix(rnorm(15), ncol=5)
y <- matrix(rnorm(20), ncol=5)

哪里

> x
           [,1]       [,2]      [,3]       [,4]       [,5]
[1,] -0.6264538  1.5952808 0.4874291 -0.3053884 -0.6212406
[2,]  0.1836433  0.3295078 0.7383247  1.5117812 -2.2146999
[3,] -0.8356286 -0.8204684 0.5757814  0.3898432  1.1249309

> y
            [,1]       [,2]        [,3]       [,4]        [,5]
[1,] -0.04493361 0.59390132 -1.98935170 -1.4707524 -0.10278773
[2,] -0.01619026 0.91897737  0.61982575 -0.4781501  0.38767161
[3,]  0.94383621 0.78213630 -0.05612874  0.4179416 -0.05380504
[4,]  0.82122120 0.07456498 -0.15579551  1.3586796 -1.37705956

然后我想得到 3×4 维的距离矩阵 distmat,其中元素 distmat[i,j]norm(x[1,]-y[2,],"2")dist(rbind(x[1,],y[2,])) 的值。

distmat <- as.matrix(unname(unstack(within(idx<-expand.grid(seq(nrow(x)),seq(nrow(y))), d <-sqrt(rowSums((x[Var1,]-y[Var2,])**2))), d~Var2)))

这给出了

> distmat
         [,1]     [,2]     [,3]     [,4]
[1,] 3.016991 1.376622 2.065831 2.857002
[2,] 4.573625 3.336707 2.698124 1.412811
[3,] 3.764925 2.235186 2.743056 3.358577

但我认为我的代码在 xy 大量行时不够优雅或高效。

我期待更快更优雅 带有 base R 的代码用于此目标。提前赞赏!

为方便起见,您可以使用以下基准来查看您的代码是否更快:

set.seed(1)
x <- matrix(rnorm(15000), ncol=5)
y <- matrix(rnorm(20000), ncol=5)
# my customized approach
method_ThomasIsCoding_v1 <- function() {
  as.matrix(unname(unstack(within(idx<-expand.grid(seq(nrow(x)),seq(nrow(y))), d <-sqrt(rowSums((x[Var1,]-y[Var2,])**2))), d~Var2)))
}
method_ThomasIsCoding_v2 <- function() {
  `dim<-`(with(idx<-expand.grid(seq(nrow(x)),seq(nrow(y))), sqrt(rowSums((x[Var1,]-y[Var2,])**2))),c(nrow(x),nrow(y)))
}
method_ThomasIsCoding_v3 <- function() {
  `dim<-`(with(idx1<-list(Var1 = rep(1:nrow(x), nrow(y)), Var2 = rep(1:nrow(y), each = nrow(x))), sqrt(rowSums((x[Var1,]-y[Var2,])**2))),c(nrow(x),nrow(y)))
}
# approach by AllanCameron
method_AllanCameron <- function()
{
  `dim<-`(sqrt(rowSums((x[rep(1:nrow(x), nrow(y)),] - y[rep(1:nrow(y), each = nrow(x)),])^2)), c(nrow(x), nrow(y)))
}
# approach by F.Prive
method_F.Prive <- function() {
  sqrt(outer(rowSums(x^2), rowSums(y^2), '+') - tcrossprod(x, 2 * y))
}
# an existing approach by A. Webb from 
method_A.Webb <- function() {
  euclidean_distance <- function(p,q) sqrt(sum((p - q)**2))
  outer(
    data.frame(t(x)),
    data.frame(t(y)),
    Vectorize(euclidean_distance)
  )
}



bm <- microbenchmark::microbenchmark(
  method_ThomasIsCoding_v1(),
  method_ThomasIsCoding_v2(),
  method_ThomasIsCoding_v3(),
  method_AllanCameron(),
  method_F.Prive(),
  # method_A.Webb(),
  unit = "relative",
  check = "equivalent",
  times = 10
)
bm

这样

Unit: relative
                       expr      min       lq     mean   median       uq      max neval
 method_ThomasIsCoding_v1() 9.471806 8.838704 7.308433 7.567879 6.989114 5.429136    10
 method_ThomasIsCoding_v2() 4.623405 4.469646 3.817199 4.024436 3.703473 2.854471    10
 method_ThomasIsCoding_v3() 4.881620 4.832024 4.070866 4.134011 3.924366 3.367746    10
      method_AllanCameron() 5.654533 5.279920 4.436071 4.772527 4.184927 3.157814    10
           method_F.Prive() 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000    10

proxy 包有一个功能。

library(proxy)
dist(x, y)

     [,1]     [,2]     [,3]     [,4]    
[1,] 3.016991 1.376622 2.065831 2.857002
[2,] 4.573625 3.336707 2.698124 1.412811
[3,] 3.764925 2.235186 2.743056 3.358577

我一直保持简单和基础 R,同时管理一个提供 3* 加速的单行代码。

`dim<-`(sqrt(rowSums((x[rep(1:nrow(x), nrow(y)),] - y[rep(1:nrow(y), each = nrow(x)),])^2)), c(nrow(x), nrow(y)))
#          [,1]     [,2]     [,3]     [,4]
# [1,] 3.016991 1.376622 2.065831 2.857002
# [2,] 4.573625 3.336707 2.698124 1.412811
# [3,] 3.764925 2.235186 2.743056 3.358577

不幸的是,我的 PC 的内存在使用大矩阵进行测试时被阻塞了,所以我不得不将尺寸减少一个数量级以 运行 测试。

显示完整代码:

set.seed(1)
x <- matrix(rnorm(1500), ncol=5)
y <- matrix(rnorm(2000), ncol=5)
# my customized approach
method_ThomasIsCoding <- function() {
  as.matrix(unname(unstack(within(idx<-expand.grid(seq(nrow(x)),seq(nrow(y))), d <-sqrt(rowSums((x[Var1,]-y[Var2,])**2))), d~Var2)))
}
# an existing approach by A. Webb from 
method_A.Webb <- function() {
  euclidean_distance <- function(p,q) sqrt(sum((p - q)**2))
  outer(
    data.frame(t(x)),
    data.frame(t(y)),
    Vectorize(euclidean_distance)
  )
}
# your approach
method_AllanCameron <- function()
{
  `dim<-`(sqrt(rowSums((x[rep(1:nrow(x), nrow(y)),] - y[rep(1:nrow(y), each = nrow(x)),])^2)), c(nrow(x), nrow(y)))
}

microbenchmark::microbenchmark(
  method_ThomasIsCoding(),
  method_A.Webb(),
  method_AllanCameron(),
  times = 10
)

结果

# Unit: milliseconds
#                     expr       min        lq      mean    median        uq       max neval
#  method_ThomasIsCoding()  63.08587  64.70988  69.59648  67.73379  75.90281  76.92903    10
#          method_A.Webb() 330.44824 349.90977 376.36962 368.52164 392.11780 446.57269    10
#    method_AllanCameron()  16.29938  18.20057  21.02634  20.45267  22.41767  31.28646    10
method_XXX <- function() {
  sqrt(outer(rowSums(x^2), rowSums(y^2), '+') - tcrossprod(x, 2 * y))
}

Unit: relative
                       expr       min        lq     mean    median        uq      max
 method_ThomasIsCoding_v1() 12.151624 10.486417 9.213107 10.162740 10.235274 5.278517
 method_ThomasIsCoding_v2()  6.923647  6.055417 5.549395  6.161603  6.140484 3.438976
 method_ThomasIsCoding_v3()  7.133525  6.218283 5.709549  6.438797  6.382204 3.383227
      method_AllanCameron()  7.093680  6.071482 5.776172  6.447973  6.497385 3.608604
               method_XXX()  1.000000  1.000000 1.000000  1.000000  1.000000 1.000000