Python 网络抓取工具在 520 个 url 时冻结。它出什么问题了?

Python web scraper freezes at 520 urls feeded. Whats wrong with it?

  1. 示例 urls.csv 将被提供给网络抓取工具。
Main,Income statement,Balance sheet,Cash flows
https://www.investing.com/equities/vical-inc,https://www.investing.com/equities/vical-inc-income-statement,https://www.investing.com/equities/vical-inc-balance-sheet,https://www.investing.com/equities/vical-inc-cash-flow
  1. ncav.py 是真正的网络抓取工具。
from os import system, name

from time import sleep

from csv import reader, writer

from ncavfunctions import income, flashbalance


def clear():
    """Clears GUI.

    """
    if name == 'nt':
        _ = system('cls')
    else:
        _ = system('clear')

# Try to read urls.csv. country is a list of lists of strings
try:
    with open('urls.csv', 'r', newline='') as csvfile:
        csv_reader = reader(csvfile)
        next(csv_reader)    # Skip Headers
        country = []
        for line in csv_reader:
            country.append(
                [line[0],
                line[1],
                line[2],
                line[3]])
    print("0. urls.csv loaded")
except:
    print("Error with urls.csv file!")
    sleep(5)

# Construct country_ncav a list of tuples of strings
country_ncav = []
i = 1
for line in country:
    clear()
    loading_perc = i * 100 / len(country)
    print("Processed {0:.2f}".format(loading_perc), "% of urls")
    print("Processing...")
    i = i + 1
    try:
        lst = \
        income(line[1])\
        + flashbalance(line[2])
        country_ncav.append(lst)
    except:
        country_ncav.append(["Unknown Error"])

# Save a csv log of country ncav items.
header = ['Name', 'Shares', 'Last price',
'Total current assets', 'Total Liabilities']
with open('flashncav.csv', 'w', newline='') as csvfile:
    csv_writer = writer(csvfile)
    csv_writer.writerow(header)
    csv_writer.writerows(country_ncav)

print("Closing in 5 seconds")
sleep(4)
print("Enjoy!")
sleep(1)
  1. ncavfunctions 模块如下。
"""investing.com rejects get requests not identifying a User-Agent
1. Copy url to clipboard
2. Open Google Chrome, right click open space and click inspect
3. In Dev window click Network Tab
4. Paste url in Address Bar and press Enter, wait fully load
5. At Name window click info, on the right click Headers
6. Scroll Down to User-Agent and copy
7. Paste it between "" after "User-Agent": in var headers
8. Continue lines as needed

Parsing for investing.com
html.parser : prettify() encoding issues
lxml        : prettify() encoding issues
lxml-xml    : prettify() working but how grab from xml?
xml         : prettify() working but how grab from xml?
html5lib    : prettify() encoding isssues
Using html5, prettify() doesnt work due to encoding issues, but
i can grab the elements i want from soup element
"""
from requests import get

from bs4 import BeautifulSoup as soup


headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10\
_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 \
Safari/537.36"}

def indusector(url_m):
    """Returns industry and sector from all known types of mains.

    Keyword arguments:
    url_m -- The url of company's main page.
    """
    global inse
    try:
        inse = indusector_a(url_m)
    except:
        inse = (
            "Error main page or data N/A",
            "")
    return inse

def indusector_a(url_m):
    """Returns industry and sector of company from type a main url.

    url_m -- The url of company's main page.
    """
    resp = get(url_m, headers=headers)
    page = soup(resp.content, "html5lib")
    cont_a = page.find("div", class_="companyProfileHeader")
    cont_b = cont_a.find_all("a")
    industry = cont_b[0].string
    sector = cont_b[1].string
    return industry, sector

def income(url_i):
    """Returns all NCAV items from all known type income statements.

    Keyword arguments:
    url_i -- The url of the Income statement.
    """
    try:
        inc = income_a(url_i)
    except:
        try:
            inc = income_b(url_i)
        except:
            inc = (
                "Error income statement or data n/a",
                "",
                "")
    return inc

def income_a(url_i):
    """Returns all NCAV items from income statements type a.

    Keyword arguments:
    url_i -- The url of the Income statement.
    """
    resp = get(url_i, headers=headers)
    page = soup(resp.content, "html5lib")

    # Grab secondaries from js dialog box and Diluted weighted average
    # shares
    cont_a = page.find_all("tbody")
    cont_b = cont_a[2].find_all("tr")
    cont_c = cont_b[31].find_all("td")
    shares = cont_c[1].string

    # Grab last price
    cont_a = page.find(id="last_last")
    lprice = cont_a.string

    # Grab Name
    cont_a = page.find("h1", class_="float_lang_base_1 relativeAttr")
    namet = cont_a.string
    tcut = len(namet) - 1
    name = namet[0:tcut]

    return name, shares, lprice

def income_b(url_i):
    """Returns all NCAV items from income statements type b.

    Keyword arguments:
    url_i -- The url of the Income statement.
    """
    resp = get(url_i, headers=headers)
    page = soup(resp.content, "html5lib")
    cont_a = page.find_all("tbody")
    cont_b = cont_a[1].find_all("tr")  # [1]vs[2] is the difference
    cont_c = cont_b[31].find_all("td") # between the 2 types.
    shares = cont_c[1].string
    cont_a = page.find(id="last_last")
    lprice = cont_a.string
    cont_a = page.find("h1", class_="float_lang_base_1 relativeAttr")
    namet = cont_a.string
    tcut = len(namet) - 1
    name = namet[0:tcut]
    return name, shares, lprice

def balance(url_b):
    """Returns all NCAV items from all known type Balance sheets.

    Keyword arguments:
    url_b -- The url of the Balance sheet.
    """
    try:
        bal = balance_a(url_b)
    except:
        bal = (
            "Error balance sheet or data n/a",
            "", "",
            "", "",
            "", "")
    return bal

def balance_a(url_b):
    """Returns all NCAV items from Balance sheet type a.

    Keyword arguments:
    url_b -- The url of the Balance sheet.
    """
    resp = get(url_b, headers=headers)
    page = soup(resp.content, "html5lib")

    # Grab bolds of js dialog box
    cont_a = page.find_all(id="parentTr")

    # Grab last total current assets
    cont_b = cont_a[0].find_all("td")
    last_tot_curr_ass = cont_b[1].string

    # Grab last total liabilities
    cont_b = cont_a[3].find_all("td")
    last_tot_liabs = cont_b[1].string

    # Grab secondaries of js dialog box
    cont_a = page.find_all("tr", class_="child")

    # Grab last cash
    cont_b = cont_a[1].find_all("td")
    last_cash = cont_b[1].string

    # Grab last cash & equivalents
    cont_b = cont_a[2].find_all("td")
    last_casnnequins = cont_b[1].string

    # Grab accounts receivables
    cont_b = cont_a[5].find_all("td")
    last_accreceivs = cont_b[1].string

    # Grab last inventory
    cont_b = cont_a[6].find_all("td")
    last_invs = cont_b[1].string

    # Grab last total debt
    cont_b = cont_a[27].find_all("td")
    last_tot_dts = (cont_b[1].string)

    return (
        last_tot_curr_ass, last_cash,
        last_casnnequins, last_accreceivs,
        last_invs, last_tot_liabs,
        last_tot_dts)

def cashflow(url_c):
    """Returns opcash and capex from Statement of cash flows all types.

    Keyword arguments:
    url_c -- The url of the Statement of cash flows.
    """
    try:
        cas = cashflow_a(url_c)
    except:
        cas = (
            "Error cash flow statement or data n/a", "",
            "", "",
            "", "",
            "", "")

    return cas

def cashflow_a(url_c):
    """Returns opcash and capex from Statement of cash flows type a.

    Keyword arguments:
    url_c -- The url of the Statement of cash flows.
    """
    resp = get(url_c, headers=headers)
    page = soup(resp.content, "html5lib")

    # Grab bolds of js dialog box and incremental operating income
    cont_a = page.find_all(id="parentTr")

    cont_b = cont_a[0].find_all("td")
    incr_opcash_4 = cont_b[1].string
    incr_opcash_3 = cont_b[2].string
    incr_opcash_2 = cont_b[3].string
    incr_opcash_1 = cont_b[4].string

    # Grab secondaries of js dialog box and incremental capital
    # expenditures
    cont_a = page.find_all("tr", class_="child")
    cont_b = cont_a[9].find_all("td")
    incr_capex_4 = cont_b[1].string
    incr_capex_3 = cont_b[2].string
    incr_capex_2 = cont_b[3].string
    incr_capex_1 = cont_b[4].string

    return (
        incr_opcash_4, incr_opcash_3,
        incr_opcash_2, incr_opcash_1,
        incr_capex_4, incr_capex_3,
        incr_capex_2, incr_capex_1)

def lastprice(url_i):
    """Returns last price from all known type income statements.

    Keyword arguments:
    url_i -- The url of the Income statement.
    """
    try:
        lprice = lastprice_a(url_i)
    except:
        try:
            lprice = lastprice_b(url_i)
        except:
            lprice = ("iError", "iError")
    return lprice

def lastprice_a(url_i):
    """Returns last price from income statements type a.

    Keyword arguments:
    url_i -- The url of the Income statement.
    """
    resp = get(url_i, headers=headers)
    page = soup(resp.content, "html5lib")

    # Grab last price
    cont_a = page.find(id="last_last")
    lprice = cont_a.string

    return lprice

def flashbalance(url_b):
    """Returns all NCAV items from all known type Balance sheets.

    Keyword arguments:
    url_b -- The url of the Balance sheet.
    """
    try:
        flashbal = flashbalance_a(url_b)
    except:
        flashbal = ("Error balance sheet or data n/a", "")
    return flashbal

def flashbalance_a(url_b):
    """Returns all NCAV items from Balance sheet type a.

    Keyword arguments:
    url_b -- The url of the Balance sheet.
    """
    resp = get(url_b, headers=headers)
    page = soup(resp.content, "html5lib")

    # Grab bolds of js dialog box
    cont_a = page.find_all(id="parentTr")

    # Grab last total current assets
    cont_b = cont_a[0].find_all("td")
    last_tot_curr_ass = cont_b[1].string

    # Grab last total liabilities
    cont_b = cont_a[3].find_all("td")
    last_tot_liabs = cont_b[1].string

    return (last_tot_curr_ass, last_tot_liabs)
  1. 示例输出 flashncav.csv
Name,Shares,Last price,Total current assets,Total Liabilities
Vical Inc (BBI),2.94,1.4700,30.73,13.14
  1. 问题是如果 csv 文件包含超过 130 行,ncav.py 冻结。
    目前的解决办法是手动打断urls.csv(有时2000家公司)
    到 130 行的组。有更好的主意吗?提前致谢。

我认为您的记忆力超载了。作为第一步,我会使用类似 top in linux 的命令来监视内存的运行情况,而脚本是 运行。 如果 运行 内存不足是问题所在,可以做得更好的一件事是不要将结果追加到 country_ncav 列表中,而是直接将它们写入文件,通过逐行追加线。

作为一般建议,尝试使用现有的抓取库或框架,如 scrapy,它将使它更容易、性能更好,除非这是创建您自己的抓取器的任务。

下面的代码在上面的概念解决方案之后实现了这个目的。
新 ncav.py:

from time import sleep

from csv import reader, writer

from ncavfunctions import income, flashbalance


# Try to read urls.csv. country is a list of lists of strings.
try:
    with open('urls.csv', 'r', newline='') as csvfile:
        csv_reader = reader(csvfile)
        next(csv_reader)    # Skip Headers
        country = []
        for line in csv_reader:
            country.append(
                [line[0],
                line[1],
                line[2],
                line[3]])
    print("File urls.csv loaded.")
except:
    print("Error loading urls.csv file!")
    sleep(5)

# Initiate csv log.
try:
    header = ['Name', 'Shares', 'Last price',
    'Total current assets', 'Total Liabilities']
    with open('ncav.csv', 'w', newline='') as csvfile:
        csv_writer = writer(csvfile)
        csv_writer.writerow(header)
    print("File ncav.csv succesfully initiated.")
except:
    print("Error initiating ncav.csv")

# Update csv log.
i = 1
for line in country:
    loading_perc = i * 100 / len(country)
    print("Processed {0:.2f}".format(loading_perc), "% of urls")
    print("Processing...")
    i = i + 1
    try:
        lst = \
        income(line[1])\
        + flashbalance(line[2])
        with open('ncav.csv', 'a', newline='') as csvfile:
            csv_writer = writer(csvfile)
            csv_writer.writerow(lst)
        print("Company info saved.")
    except:
        print("Error saving company info.")

print("Quiting in 5 seconds")
sleep(4)
print("Enjoy!")
sleep(1)