已训练模型的超参数优化
Hyperpameter optimization of already trained model
我有一个语料库,我把它分成了 3 个部分。
- 训练集80%
- 开发集 10%
- 测试集10%
我在训练集上训练了以下 CNN 模型并针对开发集进行了评估
model.add(SpatialDropout1D(0.1))
model.add(Conv1D(128, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Flatten())
# Fully connected (Dense layer)
model.add(Dense(64, activation='relu'))
# Output layer with sigmoid activation function
model.add(Dense(8, activation='sigmoid'))
我使用 model.save('model.h5')
保存了这个模型
现在,我想对保存的训练模型进行超参数优化,提供我的开发集作为训练集和测试集进行评估。
我的价值观是
过滤器 32/64/128/192/256/512 128/64
内核大小 2/3/4/5/7 3
辍学率 0.1/0.2/0.3/0.4/0.5 0.1/0.25
密集层大小 16/32/64/128/256 32
批量大小 32/50/64/100 32
学习率 0.1/0.01/0.001
任何指示如何使用任何库(如 Talos)加载现有模型来实现此目的?
根据您的最后一条评论,来自 Keras documentation:
(寻找 "grid",scikit-learn 网格搜索超参数微调。下面的代码应该完全 运行 原样。您可以对 saved/loaded 模型,使用你想要的数据集)
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.wrappers.scikit_learn import KerasClassifier
from keras import backend as K
from sklearn.model_selection import GridSearchCV
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
# load training data and do basic data normalization
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
def make_model(dense_layer_sizes, filters, kernel_size, pool_size):
'''Creates model comprised of 2 convolutional layers followed by dense layers
dense_layer_sizes: List of layer sizes.
This list has one number for each layer
filters: Number of convolutional filters in each convolutional layer
kernel_size: Convolutional kernel size
pool_size: Size of pooling area for max pooling
'''
model = Sequential()
model.add(Conv2D(filters, kernel_size,
padding='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(filters, kernel_size))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
for layer_size in dense_layer_sizes:
model.add(Dense(layer_size))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
return model
dense_size_candidates = [[32], [64], [32, 32], [64, 64]]
my_classifier = KerasClassifier(make_model, batch_size=32)
validator = GridSearchCV(my_classifier,
param_grid={'dense_layer_sizes': dense_size_candidates,
# epochs is avail for tuning even when not
# an argument to model building function
'epochs': [3, 6],
'filters': [8],
'kernel_size': [3],
'pool_size': [2]},
scoring='neg_log_loss',
n_jobs=1)
validator.fit(x_train, y_train)
print('The parameters of the best model are: ')
print(validator.best_params_)
# validator.best_estimator_ returns sklearn-wrapped version of best model.
# validator.best_estimator_.model returns the (unwrapped) keras model
best_model = validator.best_estimator_.model
metric_names = best_model.metrics_names
metric_values = best_model.evaluate(x_test, y_test)
for metric, value in zip(metric_names, metric_values):
print(metric, ': ', value)
我有一个语料库,我把它分成了 3 个部分。
- 训练集80%
- 开发集 10%
- 测试集10%
我在训练集上训练了以下 CNN 模型并针对开发集进行了评估
model.add(SpatialDropout1D(0.1))
model.add(Conv1D(128, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Conv1D(64, kernel_size=3, padding='same', activation='relu'))
model.add(MaxPooling1D(pool_size=2))
model.add(Dropout(0.25))
model.add(Flatten())
# Fully connected (Dense layer)
model.add(Dense(64, activation='relu'))
# Output layer with sigmoid activation function
model.add(Dense(8, activation='sigmoid'))
我使用 model.save('model.h5')
现在,我想对保存的训练模型进行超参数优化,提供我的开发集作为训练集和测试集进行评估。
我的价值观是
过滤器 32/64/128/192/256/512 128/64
内核大小 2/3/4/5/7 3
辍学率 0.1/0.2/0.3/0.4/0.5 0.1/0.25
密集层大小 16/32/64/128/256 32
批量大小 32/50/64/100 32
学习率 0.1/0.01/0.001
任何指示如何使用任何库(如 Talos)加载现有模型来实现此目的?
根据您的最后一条评论,来自 Keras documentation:
(寻找 "grid",scikit-learn 网格搜索超参数微调。下面的代码应该完全 运行 原样。您可以对 saved/loaded 模型,使用你想要的数据集)
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.wrappers.scikit_learn import KerasClassifier
from keras import backend as K
from sklearn.model_selection import GridSearchCV
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
# load training data and do basic data normalization
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
def make_model(dense_layer_sizes, filters, kernel_size, pool_size):
'''Creates model comprised of 2 convolutional layers followed by dense layers
dense_layer_sizes: List of layer sizes.
This list has one number for each layer
filters: Number of convolutional filters in each convolutional layer
kernel_size: Convolutional kernel size
pool_size: Size of pooling area for max pooling
'''
model = Sequential()
model.add(Conv2D(filters, kernel_size,
padding='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(filters, kernel_size))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten())
for layer_size in dense_layer_sizes:
model.add(Dense(layer_size))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
return model
dense_size_candidates = [[32], [64], [32, 32], [64, 64]]
my_classifier = KerasClassifier(make_model, batch_size=32)
validator = GridSearchCV(my_classifier,
param_grid={'dense_layer_sizes': dense_size_candidates,
# epochs is avail for tuning even when not
# an argument to model building function
'epochs': [3, 6],
'filters': [8],
'kernel_size': [3],
'pool_size': [2]},
scoring='neg_log_loss',
n_jobs=1)
validator.fit(x_train, y_train)
print('The parameters of the best model are: ')
print(validator.best_params_)
# validator.best_estimator_ returns sklearn-wrapped version of best model.
# validator.best_estimator_.model returns the (unwrapped) keras model
best_model = validator.best_estimator_.model
metric_names = best_model.metrics_names
metric_values = best_model.evaluate(x_test, y_test)
for metric, value in zip(metric_names, metric_values):
print(metric, ': ', value)