PyOpenCL程序优化/FFT
Optimization of PyOpenCL program / FFT
程序概述:此处的大部分代码创建 FrameProcessor 对象。这个对象用一些数据形状初始化,通常是 2048xN,然后可以调用它来使用一系列内核 (proc_frame) 处理数据。对于每个长度为 2048 的向量,程序将:
- 应用汉宁window(元素乘法2048*2048)
- 进行线性插值以重新映射值(映射到线性波数 space 来自信号源自的非线性光谱仪箱——细节不太重要,但我认为它会最好包括在内,以防不清楚)
- 应用 FFT
问题:我想走得更快!下面的代码没有执行 很差 ,但对于这个项目,我需要它尽可能快。但是,我不确定如何进一步改进此代码。所以,我正在寻找有关相关阅读、我应该使用的替代库、代码结构更改等方面的建议。
当前性能: 在我配备 GeForce RTX 2080 的设备上,我获得的基准测试(n=60,这似乎提供了最佳性能)是:
With n = 60
Average framerate over 1000 frames: 740Hz
Effective A-line rate over 1000 frames: 44399Hz
看来FFT是这里的一个大瓶颈。当我 运行 没有 运行 宁 FFT 的例子时,我得到这些结果:
With n = 60
Average framerate over 1000 frames: 2494Hz
Effective A-line rate over 1000 frames: 149652Hz
但是,我不知道如何改进 Reikna FFT plan I'm using! The docs don't seem to mention any steps for optimization and I've had even worse performance using gpyfft 的性能(github 存储库的 test-gpyfft 分支中的代码)。
分析:在proc_frame函数上使用cProfile的结果如下所示:
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <__array_function__ internals>:2(reshape)
4 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap>:1009(_handle_fromlist)
1 0.000 0.000 0.000 0.000 <generated code>:101(set_args)
2 0.000 0.000 0.000 0.000 <generated code>:4(enqueue_knl_kernel_fft)
1 0.000 0.000 0.000 0.000 <generated code>:71(set_args)
1 0.000 0.000 0.002 0.002 <string>:1(<module>)
3 0.000 0.000 0.000 0.000 __init__.py:1288(result)
1 0.000 0.000 0.000 0.000 __init__.py:1294(result)
3 0.000 0.000 0.001 0.000 __init__.py:1522(enqueue_copy)
1 0.000 0.000 0.000 0.000 __init__.py:222(wrap_in_tuple)
10 0.000 0.000 0.000 0.000 __init__.py:277(name)
3 0.000 0.000 0.000 0.000 __init__.py:281(default)
2 0.000 0.000 0.000 0.000 __init__.py:285(annotation)
9 0.000 0.000 0.000 0.000 __init__.py:289(kind)
1 0.000 0.000 0.000 0.000 __init__.py:375(__init__)
2 0.000 0.000 0.000 0.000 __init__.py:575(wrapper)
2 0.000 0.000 0.000 0.000 __init__.py:596(parameters)
1 0.000 0.000 0.000 0.000 __init__.py:659(_bind)
1 0.000 0.000 0.000 0.000 __init__.py:787(bind)
2 0.000 0.000 0.000 0.000 __init__.py:833(kernel_set_args)
2 0.000 0.000 0.000 0.000 __init__.py:837(kernel_call)
1 0.000 0.000 0.000 0.000 _asarray.py:16(asarray)
1 0.000 0.000 0.000 0.000 _internal.py:830(npy_ctypes_check)
1 0.000 0.000 0.000 0.000 abc.py:137(__instancecheck__)
1 0.000 0.000 0.000 0.000 api.py:376(empty_like)
1 0.000 0.000 0.000 0.000 api.py:405(to_device)
3 0.000 0.000 0.000 0.000 api.py:466(_synchronize)
2 0.000 0.000 0.000 0.000 api.py:678(prepared_call)
2 0.000 0.000 0.000 0.000 api.py:688(__call__)
2 0.000 0.000 0.000 0.000 api.py:779(__call__)
2 0.000 0.000 0.000 0.000 array.py:1474(add_event)
1 0.000 0.000 0.000 0.000 array.py:28(f_contiguous_strides)
1 0.000 0.000 0.000 0.000 array.py:38(c_contiguous_strides)
1 0.000 0.000 0.000 0.000 array.py:393(__init__)
3 0.000 0.000 0.000 0.000 array.py:48(equal_strides)
1 0.000 0.000 0.000 0.000 array.py:520(flags)
1 0.000 0.000 0.000 0.000 array.py:580(set)
1 0.000 0.000 0.000 0.000 array.py:59(is_f_contiguous_strides)
1 0.000 0.000 0.000 0.000 array.py:61(_dtype_is_object)
1 0.000 0.000 0.000 0.000 array.py:63(is_c_contiguous_strides)
1 0.000 0.000 0.001 0.001 array.py:635(_get)
1 0.000 0.000 0.000 0.000 array.py:68(__init__)
1 0.000 0.000 0.001 0.001 array.py:689(get)
1 0.000 0.000 0.000 0.000 computation.py:620(__call__)
2 0.000 0.000 0.000 0.000 computation.py:641(__call__)
1 0.000 0.000 0.000 0.000 dtypes.py:75(normalize_type)
1 0.000 0.000 0.001 0.001 frameprocessor.py:130(FFT)
1 0.000 0.000 0.001 0.001 frameprocessor.py:137(interp_hann)
1 0.000 0.000 0.002 0.002 frameprocessor.py:146(proc_frame)
1 0.000 0.000 0.000 0.000 frameprocessor.py:20(npcast)
1 0.000 0.000 0.000 0.000 frameprocessor.py:23(rshp)
1 0.000 0.000 0.000 0.000 fromnumeric.py:197(_reshape_dispatcher)
1 0.000 0.000 0.000 0.000 fromnumeric.py:202(reshape)
1 0.000 0.000 0.000 0.000 fromnumeric.py:55(_wrapfunc)
1 0.000 0.000 0.000 0.000 ocl.py:109(allocate)
1 0.000 0.000 0.000 0.000 ocl.py:112(_copy_array)
2 0.000 0.000 0.000 0.000 ocl.py:223(_prepared_call)
2 0.000 0.000 0.000 0.000 ocl.py:225(<listcomp>)
1 0.000 0.000 0.000 0.000 ocl.py:28(__init__)
1 0.000 0.000 0.001 0.001 ocl.py:63(get)
1 0.000 0.000 0.000 0.000 ocl.py:88(array)
1 0.000 0.000 0.000 0.000 signature.py:308(bind_with_defaults)
1 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck}
1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}
4 0.000 0.000 0.000 0.000 {built-in method builtins.getattr}
12 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
37 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance}
2 0.000 0.000 0.000 0.000 {built-in method builtins.iter}
14 0.000 0.000 0.000 0.000 {built-in method builtins.len}
6 0.000 0.000 0.000 0.000 {built-in method builtins.next}
1 0.000 0.000 0.000 0.000 {built-in method builtins.setattr}
1 0.000 0.000 0.000 0.000 {built-in method numpy.array}
1 0.000 0.000 0.000 0.000 {built-in method numpy.core._multiarray_umath.implement_array_function}
1 0.000 0.000 0.000 0.000 {built-in method numpy.empty}
2 0.001 0.001 0.001 0.001 {built-in method pyopencl._cl._enqueue_read_buffer}
1 0.000 0.000 0.000 0.000 {built-in method pyopencl._cl._enqueue_write_buffer}
4 0.000 0.000 0.000 0.000 {built-in method pyopencl._cl.enqueue_nd_range_kernel}
2 0.000 0.000 0.000 0.000 {built-in method pyopencl._cl.get_cl_header_version}
6 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
3 0.000 0.000 0.000 0.000 {method 'pop' of 'dict' objects}
1 0.000 0.000 0.000 0.000 {method 'reshape' of 'numpy.ndarray' objects}
2 0.000 0.000 0.000 0.000 {method 'values' of 'mappingproxy' objects}
代码: 代码和补充文件可以在这里访问:https://github.com/mswallac/PyMotionOCT
为了方便起见,也显示在下面。
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 15 10:17:16 2020
@author: Mike
"""
import numpy as np
import pyopencl as cl
from pyopencl import cltypes
from pyopencl import array
from reikna.fft import FFT
from reikna import cluda
import time
import matplotlib.pyplot as plt
class FrameProcessor():
def npcast(self,inp,dt):
return np.asarray(inp).astype(dt)
def rshp(self,inp,shape):
return np.reshape(inp,shape,'C')
def __init__(self,nlines):
# Define data formatting
n = nlines # number of A-lines per frame
alen = 2048 # length of A-line / # of spec. bins
self.dshape = (alen*n,)
self.dt_prefft = np.float32
self.dt_fft = np.complex64
self.data_prefft = self.npcast(np.zeros(self.dshape),self.dt_prefft)
self.data_fft = self.npcast(np.zeros(self.dshape),self.dt_fft)
# Load spectrometer bins and prepare for interpolation / hanning operation
hanning_win = self.npcast(np.hanning(2048),self.dt_prefft)
lam = self.npcast(np.load('lam.npy'),self.dt_prefft)
lmax = np.max(lam)
lmin = np.min(lam)
kmax = 1/lmin
kmin = 1/lmax
self.d_l = (lmax - lmin)/alen
self.d_k = (kmax - kmin)/alen
self.k_raw = self.npcast([1/x for x in (lam)],self.dt_prefft)
self.k_lin = self.npcast([kmax-(i*self.d_k) for i in range(alen)],self.dt_prefft)
# Find nearest neighbors for interpolation prep.
nn0 = np.zeros((2048,),np.int32)
nn1 = np.zeros((2048,),np.int32)
for i in range(0,2048):
res = np.abs(self.k_raw-self.k_lin[i])
minind = np.argmin(res)
if i==0:
nn0[i]=0
nn1[i]=1
if res[minind]>=0:
nn0[i]=minind-1
nn1[i]=minind
else:
nn0[i]=minind
nn1[i]=minind+1
self.nn0=nn0
self.nn1=nn1
# Initialize PyOpenCL platform, device, context, queue
self.platform = cl.get_platforms()
self.platform = self.platform[0]
self.device = self.platform.get_devices()
self.device = self.device[0]
self.context = cl.Context([self.device])
self.queue = cl.CommandQueue(self.context)
# POCL input buffers
mflags = cl.mem_flags
self.win_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=hanning_win)
self.nn0_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.nn0)
self.nn1_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.nn1)
self.k_lin_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.k_lin)
self.k_raw_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.k_raw)
self.d_k_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.d_k)
# POCL output buffers
self.npres_interp = self.npcast(np.zeros(self.dshape),self.dt_prefft)
self.npres_hann = self.npcast(np.zeros(self.dshape),self.dt_prefft)
self.result_interp = cl.Buffer(self.context, cl.mem_flags.COPY_HOST_PTR, hostbuf=self.npres_interp)
self.result_hann = cl.Buffer(self.context, cl.mem_flags.COPY_HOST_PTR, hostbuf=self.npres_hann)
# Define POCL global / local work group sizes
self.global_wgsize = (2048,n)
self.local_wgsize = (512,1)
# Initialize Reikna API, thread, FFT plan, output memory
self.api = cluda.ocl_api()
self.thr = self.api.Thread.create()
self.result = self.npcast(np.zeros((2048,n)),self.dt_fft)
self.fft = FFT(self.result,axes=(0,)).compile(self.thr)
# kernels for hanning window, and interpolation
self.program = cl.Program(self.context, """
__kernel void hann(__global float *inp, __global const float *win, __global float *res)
{
int i = get_global_id(0)+(get_global_size(0)*get_global_id(1));
int j = get_local_id(0)+(get_group_id(0)*get_local_size(0));
res[i] = inp[i]*win[j];
}
__kernel void interp(__global float *y,__global const int *nn0,__global const int *nn1,
__global const float *k_raw,__global const float *k_lin,__global float *res)
{
int i_shift = (get_global_size(0)*get_global_id(1));
int i_glob = get_global_id(0)+i_shift;
int i_loc = get_local_id(0)+(get_group_id(0)*get_local_size(0));
float x1 = k_raw[nn0[i_loc]];
float x2 = k_raw[nn1[i_loc]];
float y1 = y[i_shift+nn0[i_loc]];
float y2 = y[i_shift+nn1[i_loc]];
float x = k_lin[i_loc];
res[i_glob]=y1+((x-x1)*((y2-y1)/(x2-x1)));
}
""").build()
self.hann = self.program.hann
self.interp = self.program.interp
# Wraps FFT kernel
def FFT(self,data):
inp = self.thr.to_device(self.npcast(data,self.dt_fft))
self.fft(inp,inp,inverse=0)
self.result = inp.get()
return
# Wraps interpolation and hanning window kernels
def interp_hann(self,data):
self.data_pfg = cl.Buffer(self.context, cl.mem_flags.COPY_HOST_PTR, hostbuf=data)
self.hann.set_args(self.data_pfg,self.win_g,self.result_hann)
cl.enqueue_nd_range_kernel(self.queue,self.hann,self.global_wgsize,self.local_wgsize)
self.interp.set_args(self.result_hann,self.nn0_g,self.nn1_g,self.k_raw_g,self.k_lin_g,self.result_interp)
cl.enqueue_nd_range_kernel(self.queue,self.interp,self.global_wgsize,self.local_wgsize)
cl.enqueue_copy(self.queue,self.npres_interp,self.result_interp)
return
def proc_frame(self,data):
self.interp_hann(data)
self.FFT(self.rshp(self.npres_interp,(2048,n)))
return self.result
if __name__ == '__main__':
n=60
fp = FrameProcessor(n)
data1 = np.load('data.npy').flatten()
times = []
data = fp.npcast(data1[0:2048*n],fp.dt_prefft)
for i in range(5000):
t=time.time()
res = fp.proc_frame(data)
times.append(time.time()-t)
res = np.reshape(res,(2048,n),'C')
avginterval = np.mean(times)
frate=(1/avginterval)
afrate=frate*n
print('With n = %d '%n)
print('Average framerate over 1000 frames: %.0fHz'%frate)
print('Effective A-line rate over 1000 frames: %.0fHz'%afrate)
编辑:更新代码和基准测试
编辑 2:添加了 cProfile 结果
正在复制我在Reikna group中的回复以供参考。
- Create a reikna Thread object from whatever pyopencl queue you want it to use (probably the one associated with the arrays you want to pass to FFT)
- Create an FFT computation based on this Thread
- Pass your pyopencl arrays to it without any conversion.
(you can create a reikna array based on the buffer from a pyopencl array, by passing it as
base_data
keyword, but if using FFT is all you need, that is not necessary).
Reikna threads are wrappers on top of pyopencl context + queue, and reikna arrays are subclasses of pyopencl arrays, so the interop should be pretty simple.
应用这个(以一种快速而肮脏的方式,随意改进),我得到:https://gist.github.com/fjarri/f781d3695b7c6678856110cced95be40。基本上,变化是:
- 从现有
queue
(self.thr = self.api.Thread(self.queue)
) 中创建 Thread
- 在 FFT 中使用 PyOpenCL 缓冲区而不将其复制到 CPU。
我得到的结果:
$ python frameprocessor.py # original version
With n = 60
Average framerate over 1000 frames: 434Hz
Effective A-line rate over 1000 frames: 26012Hz
$ python frameprocessor2.py # modified version
With n = 60
Average framerate over 1000 frames: 2191Hz
Effective A-line rate over 1000 frames: 131478Hz
程序概述:此处的大部分代码创建 FrameProcessor 对象。这个对象用一些数据形状初始化,通常是 2048xN,然后可以调用它来使用一系列内核 (proc_frame) 处理数据。对于每个长度为 2048 的向量,程序将:
- 应用汉宁window(元素乘法2048*2048)
- 进行线性插值以重新映射值(映射到线性波数 space 来自信号源自的非线性光谱仪箱——细节不太重要,但我认为它会最好包括在内,以防不清楚)
- 应用 FFT
问题:我想走得更快!下面的代码没有执行 很差 ,但对于这个项目,我需要它尽可能快。但是,我不确定如何进一步改进此代码。所以,我正在寻找有关相关阅读、我应该使用的替代库、代码结构更改等方面的建议。
当前性能: 在我配备 GeForce RTX 2080 的设备上,我获得的基准测试(n=60,这似乎提供了最佳性能)是:
With n = 60
Average framerate over 1000 frames: 740Hz
Effective A-line rate over 1000 frames: 44399Hz
看来FFT是这里的一个大瓶颈。当我 运行 没有 运行 宁 FFT 的例子时,我得到这些结果:
With n = 60
Average framerate over 1000 frames: 2494Hz
Effective A-line rate over 1000 frames: 149652Hz
但是,我不知道如何改进 Reikna FFT plan I'm using! The docs don't seem to mention any steps for optimization and I've had even worse performance using gpyfft 的性能(github 存储库的 test-gpyfft 分支中的代码)。
分析:在proc_frame函数上使用cProfile的结果如下所示:
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 0.000 0.000 <__array_function__ internals>:2(reshape)
4 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap>:1009(_handle_fromlist)
1 0.000 0.000 0.000 0.000 <generated code>:101(set_args)
2 0.000 0.000 0.000 0.000 <generated code>:4(enqueue_knl_kernel_fft)
1 0.000 0.000 0.000 0.000 <generated code>:71(set_args)
1 0.000 0.000 0.002 0.002 <string>:1(<module>)
3 0.000 0.000 0.000 0.000 __init__.py:1288(result)
1 0.000 0.000 0.000 0.000 __init__.py:1294(result)
3 0.000 0.000 0.001 0.000 __init__.py:1522(enqueue_copy)
1 0.000 0.000 0.000 0.000 __init__.py:222(wrap_in_tuple)
10 0.000 0.000 0.000 0.000 __init__.py:277(name)
3 0.000 0.000 0.000 0.000 __init__.py:281(default)
2 0.000 0.000 0.000 0.000 __init__.py:285(annotation)
9 0.000 0.000 0.000 0.000 __init__.py:289(kind)
1 0.000 0.000 0.000 0.000 __init__.py:375(__init__)
2 0.000 0.000 0.000 0.000 __init__.py:575(wrapper)
2 0.000 0.000 0.000 0.000 __init__.py:596(parameters)
1 0.000 0.000 0.000 0.000 __init__.py:659(_bind)
1 0.000 0.000 0.000 0.000 __init__.py:787(bind)
2 0.000 0.000 0.000 0.000 __init__.py:833(kernel_set_args)
2 0.000 0.000 0.000 0.000 __init__.py:837(kernel_call)
1 0.000 0.000 0.000 0.000 _asarray.py:16(asarray)
1 0.000 0.000 0.000 0.000 _internal.py:830(npy_ctypes_check)
1 0.000 0.000 0.000 0.000 abc.py:137(__instancecheck__)
1 0.000 0.000 0.000 0.000 api.py:376(empty_like)
1 0.000 0.000 0.000 0.000 api.py:405(to_device)
3 0.000 0.000 0.000 0.000 api.py:466(_synchronize)
2 0.000 0.000 0.000 0.000 api.py:678(prepared_call)
2 0.000 0.000 0.000 0.000 api.py:688(__call__)
2 0.000 0.000 0.000 0.000 api.py:779(__call__)
2 0.000 0.000 0.000 0.000 array.py:1474(add_event)
1 0.000 0.000 0.000 0.000 array.py:28(f_contiguous_strides)
1 0.000 0.000 0.000 0.000 array.py:38(c_contiguous_strides)
1 0.000 0.000 0.000 0.000 array.py:393(__init__)
3 0.000 0.000 0.000 0.000 array.py:48(equal_strides)
1 0.000 0.000 0.000 0.000 array.py:520(flags)
1 0.000 0.000 0.000 0.000 array.py:580(set)
1 0.000 0.000 0.000 0.000 array.py:59(is_f_contiguous_strides)
1 0.000 0.000 0.000 0.000 array.py:61(_dtype_is_object)
1 0.000 0.000 0.000 0.000 array.py:63(is_c_contiguous_strides)
1 0.000 0.000 0.001 0.001 array.py:635(_get)
1 0.000 0.000 0.000 0.000 array.py:68(__init__)
1 0.000 0.000 0.001 0.001 array.py:689(get)
1 0.000 0.000 0.000 0.000 computation.py:620(__call__)
2 0.000 0.000 0.000 0.000 computation.py:641(__call__)
1 0.000 0.000 0.000 0.000 dtypes.py:75(normalize_type)
1 0.000 0.000 0.001 0.001 frameprocessor.py:130(FFT)
1 0.000 0.000 0.001 0.001 frameprocessor.py:137(interp_hann)
1 0.000 0.000 0.002 0.002 frameprocessor.py:146(proc_frame)
1 0.000 0.000 0.000 0.000 frameprocessor.py:20(npcast)
1 0.000 0.000 0.000 0.000 frameprocessor.py:23(rshp)
1 0.000 0.000 0.000 0.000 fromnumeric.py:197(_reshape_dispatcher)
1 0.000 0.000 0.000 0.000 fromnumeric.py:202(reshape)
1 0.000 0.000 0.000 0.000 fromnumeric.py:55(_wrapfunc)
1 0.000 0.000 0.000 0.000 ocl.py:109(allocate)
1 0.000 0.000 0.000 0.000 ocl.py:112(_copy_array)
2 0.000 0.000 0.000 0.000 ocl.py:223(_prepared_call)
2 0.000 0.000 0.000 0.000 ocl.py:225(<listcomp>)
1 0.000 0.000 0.000 0.000 ocl.py:28(__init__)
1 0.000 0.000 0.001 0.001 ocl.py:63(get)
1 0.000 0.000 0.000 0.000 ocl.py:88(array)
1 0.000 0.000 0.000 0.000 signature.py:308(bind_with_defaults)
1 0.000 0.000 0.000 0.000 {built-in method _abc._abc_instancecheck}
1 0.000 0.000 0.002 0.002 {built-in method builtins.exec}
4 0.000 0.000 0.000 0.000 {built-in method builtins.getattr}
12 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
37 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance}
2 0.000 0.000 0.000 0.000 {built-in method builtins.iter}
14 0.000 0.000 0.000 0.000 {built-in method builtins.len}
6 0.000 0.000 0.000 0.000 {built-in method builtins.next}
1 0.000 0.000 0.000 0.000 {built-in method builtins.setattr}
1 0.000 0.000 0.000 0.000 {built-in method numpy.array}
1 0.000 0.000 0.000 0.000 {built-in method numpy.core._multiarray_umath.implement_array_function}
1 0.000 0.000 0.000 0.000 {built-in method numpy.empty}
2 0.001 0.001 0.001 0.001 {built-in method pyopencl._cl._enqueue_read_buffer}
1 0.000 0.000 0.000 0.000 {built-in method pyopencl._cl._enqueue_write_buffer}
4 0.000 0.000 0.000 0.000 {built-in method pyopencl._cl.enqueue_nd_range_kernel}
2 0.000 0.000 0.000 0.000 {built-in method pyopencl._cl.get_cl_header_version}
6 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
1 0.000 0.000 0.000 0.000 {method 'astype' of 'numpy.ndarray' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
3 0.000 0.000 0.000 0.000 {method 'pop' of 'dict' objects}
1 0.000 0.000 0.000 0.000 {method 'reshape' of 'numpy.ndarray' objects}
2 0.000 0.000 0.000 0.000 {method 'values' of 'mappingproxy' objects}
代码: 代码和补充文件可以在这里访问:https://github.com/mswallac/PyMotionOCT 为了方便起见,也显示在下面。
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 15 10:17:16 2020
@author: Mike
"""
import numpy as np
import pyopencl as cl
from pyopencl import cltypes
from pyopencl import array
from reikna.fft import FFT
from reikna import cluda
import time
import matplotlib.pyplot as plt
class FrameProcessor():
def npcast(self,inp,dt):
return np.asarray(inp).astype(dt)
def rshp(self,inp,shape):
return np.reshape(inp,shape,'C')
def __init__(self,nlines):
# Define data formatting
n = nlines # number of A-lines per frame
alen = 2048 # length of A-line / # of spec. bins
self.dshape = (alen*n,)
self.dt_prefft = np.float32
self.dt_fft = np.complex64
self.data_prefft = self.npcast(np.zeros(self.dshape),self.dt_prefft)
self.data_fft = self.npcast(np.zeros(self.dshape),self.dt_fft)
# Load spectrometer bins and prepare for interpolation / hanning operation
hanning_win = self.npcast(np.hanning(2048),self.dt_prefft)
lam = self.npcast(np.load('lam.npy'),self.dt_prefft)
lmax = np.max(lam)
lmin = np.min(lam)
kmax = 1/lmin
kmin = 1/lmax
self.d_l = (lmax - lmin)/alen
self.d_k = (kmax - kmin)/alen
self.k_raw = self.npcast([1/x for x in (lam)],self.dt_prefft)
self.k_lin = self.npcast([kmax-(i*self.d_k) for i in range(alen)],self.dt_prefft)
# Find nearest neighbors for interpolation prep.
nn0 = np.zeros((2048,),np.int32)
nn1 = np.zeros((2048,),np.int32)
for i in range(0,2048):
res = np.abs(self.k_raw-self.k_lin[i])
minind = np.argmin(res)
if i==0:
nn0[i]=0
nn1[i]=1
if res[minind]>=0:
nn0[i]=minind-1
nn1[i]=minind
else:
nn0[i]=minind
nn1[i]=minind+1
self.nn0=nn0
self.nn1=nn1
# Initialize PyOpenCL platform, device, context, queue
self.platform = cl.get_platforms()
self.platform = self.platform[0]
self.device = self.platform.get_devices()
self.device = self.device[0]
self.context = cl.Context([self.device])
self.queue = cl.CommandQueue(self.context)
# POCL input buffers
mflags = cl.mem_flags
self.win_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=hanning_win)
self.nn0_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.nn0)
self.nn1_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.nn1)
self.k_lin_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.k_lin)
self.k_raw_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.k_raw)
self.d_k_g = cl.Buffer(self.context, mflags.READ_ONLY | mflags.COPY_HOST_PTR, hostbuf=self.d_k)
# POCL output buffers
self.npres_interp = self.npcast(np.zeros(self.dshape),self.dt_prefft)
self.npres_hann = self.npcast(np.zeros(self.dshape),self.dt_prefft)
self.result_interp = cl.Buffer(self.context, cl.mem_flags.COPY_HOST_PTR, hostbuf=self.npres_interp)
self.result_hann = cl.Buffer(self.context, cl.mem_flags.COPY_HOST_PTR, hostbuf=self.npres_hann)
# Define POCL global / local work group sizes
self.global_wgsize = (2048,n)
self.local_wgsize = (512,1)
# Initialize Reikna API, thread, FFT plan, output memory
self.api = cluda.ocl_api()
self.thr = self.api.Thread.create()
self.result = self.npcast(np.zeros((2048,n)),self.dt_fft)
self.fft = FFT(self.result,axes=(0,)).compile(self.thr)
# kernels for hanning window, and interpolation
self.program = cl.Program(self.context, """
__kernel void hann(__global float *inp, __global const float *win, __global float *res)
{
int i = get_global_id(0)+(get_global_size(0)*get_global_id(1));
int j = get_local_id(0)+(get_group_id(0)*get_local_size(0));
res[i] = inp[i]*win[j];
}
__kernel void interp(__global float *y,__global const int *nn0,__global const int *nn1,
__global const float *k_raw,__global const float *k_lin,__global float *res)
{
int i_shift = (get_global_size(0)*get_global_id(1));
int i_glob = get_global_id(0)+i_shift;
int i_loc = get_local_id(0)+(get_group_id(0)*get_local_size(0));
float x1 = k_raw[nn0[i_loc]];
float x2 = k_raw[nn1[i_loc]];
float y1 = y[i_shift+nn0[i_loc]];
float y2 = y[i_shift+nn1[i_loc]];
float x = k_lin[i_loc];
res[i_glob]=y1+((x-x1)*((y2-y1)/(x2-x1)));
}
""").build()
self.hann = self.program.hann
self.interp = self.program.interp
# Wraps FFT kernel
def FFT(self,data):
inp = self.thr.to_device(self.npcast(data,self.dt_fft))
self.fft(inp,inp,inverse=0)
self.result = inp.get()
return
# Wraps interpolation and hanning window kernels
def interp_hann(self,data):
self.data_pfg = cl.Buffer(self.context, cl.mem_flags.COPY_HOST_PTR, hostbuf=data)
self.hann.set_args(self.data_pfg,self.win_g,self.result_hann)
cl.enqueue_nd_range_kernel(self.queue,self.hann,self.global_wgsize,self.local_wgsize)
self.interp.set_args(self.result_hann,self.nn0_g,self.nn1_g,self.k_raw_g,self.k_lin_g,self.result_interp)
cl.enqueue_nd_range_kernel(self.queue,self.interp,self.global_wgsize,self.local_wgsize)
cl.enqueue_copy(self.queue,self.npres_interp,self.result_interp)
return
def proc_frame(self,data):
self.interp_hann(data)
self.FFT(self.rshp(self.npres_interp,(2048,n)))
return self.result
if __name__ == '__main__':
n=60
fp = FrameProcessor(n)
data1 = np.load('data.npy').flatten()
times = []
data = fp.npcast(data1[0:2048*n],fp.dt_prefft)
for i in range(5000):
t=time.time()
res = fp.proc_frame(data)
times.append(time.time()-t)
res = np.reshape(res,(2048,n),'C')
avginterval = np.mean(times)
frate=(1/avginterval)
afrate=frate*n
print('With n = %d '%n)
print('Average framerate over 1000 frames: %.0fHz'%frate)
print('Effective A-line rate over 1000 frames: %.0fHz'%afrate)
编辑:更新代码和基准测试 编辑 2:添加了 cProfile 结果
正在复制我在Reikna group中的回复以供参考。
- Create a reikna Thread object from whatever pyopencl queue you want it to use (probably the one associated with the arrays you want to pass to FFT)
- Create an FFT computation based on this Thread
- Pass your pyopencl arrays to it without any conversion. (you can create a reikna array based on the buffer from a pyopencl array, by passing it as
base_data
keyword, but if using FFT is all you need, that is not necessary).Reikna threads are wrappers on top of pyopencl context + queue, and reikna arrays are subclasses of pyopencl arrays, so the interop should be pretty simple.
应用这个(以一种快速而肮脏的方式,随意改进),我得到:https://gist.github.com/fjarri/f781d3695b7c6678856110cced95be40。基本上,变化是:
- 从现有
queue
(self.thr = self.api.Thread(self.queue)
) 中创建 - 在 FFT 中使用 PyOpenCL 缓冲区而不将其复制到 CPU。
Thread
我得到的结果:
$ python frameprocessor.py # original version
With n = 60
Average framerate over 1000 frames: 434Hz
Effective A-line rate over 1000 frames: 26012Hz
$ python frameprocessor2.py # modified version
With n = 60
Average framerate over 1000 frames: 2191Hz
Effective A-line rate over 1000 frames: 131478Hz