Haskell:组合存在量词和通用量词意外失败
Haskell: Combining existential and universal quantifiers fails unexpectedly
我正在尝试使用 GHC 8.6.5 版在 Haskell 中对以下逻辑含义进行建模:
(∀ a. ¬ Φ(a)) → ¬ (∃ a: Φ(a))
我使用的定义如下:
{-# LANGUAGE RankNTypes, GADTs #-}
import Data.Void
-- Existential quantification via GADT
data Ex phi where
Ex :: forall a phi. phi a -> Ex phi
-- Universal quantification, wrapped into a newtype
newtype All phi = All (forall a. phi a)
-- Negation, as a function to Void
type Not a = a -> Void
-- Negation of a predicate, wrapped into a newtype
newtype NotPred phi a = NP (phi a -> Void)
-- The following definition does not work:
theorem :: All (NotPred phi) -> Not (Ex phi)
theorem (All (NP f)) (Ex a) = f a
此处,GHC 拒绝执行 theorem
并显示以下错误消息:
* Couldn't match type `a' with `a0'
`a' is a rigid type variable bound by
a pattern with constructor:
Ex :: forall a (phi :: * -> *). phi a -> Ex phi,
in an equation for `theorem'
at question.hs:20:23-26
* In the first argument of `f', namely `a'
In the expression: f a
In an equation for `theorem': theorem (All (NP f)) (Ex a) = f a
* Relevant bindings include
a :: phi a (bound at question.hs:20:26)
f :: phi a0 -> Void (bound at question.hs:20:18)
我不太明白为什么GHC不能匹配这两种类型。
以下解决方法编译:
theorem = flip theorem' where
theorem' (Ex a) (All (NP f)) = f a
对我来说,theorem
的两个实现是等价的。为什么 GHC 只接受第二个?
当您将模式 All prf
与类型 All phi
的值匹配时,prf
被提取为类型 forall a. phi a
的多态实体。在这种情况下,您会得到 no :: forall a. NotPred phi a
。但是,您不能对这种类型的对象执行模式匹配。毕竟,它是一个从类型到值的函数。你需要将它应用到一个特定的类型(称之为_a
),你会得到no @_a :: NotPred phi _a
,现在可以匹配它来提取一个f :: phi _a -> Void
。如果你扩展你的定义...
{-# LANGUAGE ScopedTypeVariables #-}
-- type signature with forall needed to bind the variable phi
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem prf wit = case prf of
All no -> case no @_a of -- no :: forall a. NotPred phi a
NP f -> case wit of -- f :: phi _a -> Void
Ex (x :: phi b) -> f x -- matching against Ex extracts a type variable, call it b, and then x :: phi b
那么问题来了,_a
应该用什么类型呢?好吧,我们正在将 f :: phi _a -> Void
应用于 x :: b
(其中 b
是存储在 wit
中的类型变量),因此我们应该设置 _a := b
。但这是范围界定违规。 b
仅通过与 Ex
匹配来提取,这发生在我们专门化 no
并提取 f
之后,因此 f
的类型不能依赖于 b
。因此,没有选择 _a
可以在不让存在变量脱离其范围的情况下完成这项工作。错误。
正如您发现的那样,解决方案是在将该类型应用到 no
.
之前匹配 Ex
(从而提取其中的类型)
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem prf wit = case wit of
Ex (x :: phi b) -> case prf of
All no -> case no @b of
NP f -> f x
-- or
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem (All no) (Ex x) | NP f <- no = f x
我正在尝试使用 GHC 8.6.5 版在 Haskell 中对以下逻辑含义进行建模:
(∀ a. ¬ Φ(a)) → ¬ (∃ a: Φ(a))
我使用的定义如下:
{-# LANGUAGE RankNTypes, GADTs #-}
import Data.Void
-- Existential quantification via GADT
data Ex phi where
Ex :: forall a phi. phi a -> Ex phi
-- Universal quantification, wrapped into a newtype
newtype All phi = All (forall a. phi a)
-- Negation, as a function to Void
type Not a = a -> Void
-- Negation of a predicate, wrapped into a newtype
newtype NotPred phi a = NP (phi a -> Void)
-- The following definition does not work:
theorem :: All (NotPred phi) -> Not (Ex phi)
theorem (All (NP f)) (Ex a) = f a
此处,GHC 拒绝执行 theorem
并显示以下错误消息:
* Couldn't match type `a' with `a0'
`a' is a rigid type variable bound by
a pattern with constructor:
Ex :: forall a (phi :: * -> *). phi a -> Ex phi,
in an equation for `theorem'
at question.hs:20:23-26
* In the first argument of `f', namely `a'
In the expression: f a
In an equation for `theorem': theorem (All (NP f)) (Ex a) = f a
* Relevant bindings include
a :: phi a (bound at question.hs:20:26)
f :: phi a0 -> Void (bound at question.hs:20:18)
我不太明白为什么GHC不能匹配这两种类型。 以下解决方法编译:
theorem = flip theorem' where
theorem' (Ex a) (All (NP f)) = f a
对我来说,theorem
的两个实现是等价的。为什么 GHC 只接受第二个?
当您将模式 All prf
与类型 All phi
的值匹配时,prf
被提取为类型 forall a. phi a
的多态实体。在这种情况下,您会得到 no :: forall a. NotPred phi a
。但是,您不能对这种类型的对象执行模式匹配。毕竟,它是一个从类型到值的函数。你需要将它应用到一个特定的类型(称之为_a
),你会得到no @_a :: NotPred phi _a
,现在可以匹配它来提取一个f :: phi _a -> Void
。如果你扩展你的定义...
{-# LANGUAGE ScopedTypeVariables #-}
-- type signature with forall needed to bind the variable phi
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem prf wit = case prf of
All no -> case no @_a of -- no :: forall a. NotPred phi a
NP f -> case wit of -- f :: phi _a -> Void
Ex (x :: phi b) -> f x -- matching against Ex extracts a type variable, call it b, and then x :: phi b
那么问题来了,_a
应该用什么类型呢?好吧,我们正在将 f :: phi _a -> Void
应用于 x :: b
(其中 b
是存储在 wit
中的类型变量),因此我们应该设置 _a := b
。但这是范围界定违规。 b
仅通过与 Ex
匹配来提取,这发生在我们专门化 no
并提取 f
之后,因此 f
的类型不能依赖于 b
。因此,没有选择 _a
可以在不让存在变量脱离其范围的情况下完成这项工作。错误。
正如您发现的那样,解决方案是在将该类型应用到 no
.
Ex
(从而提取其中的类型)
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem prf wit = case wit of
Ex (x :: phi b) -> case prf of
All no -> case no @b of
NP f -> f x
-- or
theorem :: forall phi. All (NotPred phi) -> Not (Ex phi)
theorem (All no) (Ex x) | NP f <- no = f x