Boost Spirit x3 条件(三元)运算符解析器(跟进问题)
Boost Spirit x3 conditional (ternary) operator parser (follow up question)
这个问题是
中那个问题的后续问题
Boost Spirit x3 conditional (ternary) operator parser
原始问题上下文没有显示(我的错!)ast 属性,因此答案无法考虑所有移动部分。这个问题现在展示了 ast 属性的样子,以及 ast 是如何用符号 table.
来计算表达式的。
因此,后续问题是正确拼写的三元条件应如何更改 ast 类型以及条件和表达式如何相互作用(根据我的理解,它现在不是 x3::variant 的一部分,因为它将从主要解析器选择中删除)
这是 ast 属性和声明的符号定义的样子
namespace x3 = boost::spirit::x3;
namespace ast {
struct nil {};
struct unary_op;
struct binary_op;
struct conditional_op;
struct expression;
struct operand : x3::variant<
nil
, double
, std::string
, x3::forward_ast<unary_op>
, x3::forward_ast<binary_op>
//, x3::forward_ast<conditional_op> // conditional_op not here?
, x3::forward_ast<expression>
> {
using base_type::base_type;
using base_type::operator=;
};
struct unary_op {
double (*op)(double);
operand rhs;
};
struct binary_op {
double (*op)(double, double);
operand lhs;
operand rhs;
};
/*
struct conditional_op {
operand lhs;
operand rhs_true;
operand rhs_false;
};
*/
struct conditional_op {
expression lhs;
// how the exact type is spelled?
optional<expression, expression> maybe_rhs;
};
struct operation {
double (*op)(double, double);
operand rhs;
};
// what is the type of expression ?
struct expression {
conditional_op conditional;
};
/*
struct expression {
operand lhs;
std::list<operation> rhs;
};
*/
} // namespace ast
struct constant_ : x3::symbols<double> {
constant_() {
add
("e" , boost::math::constants::e<double>())
("pi" , boost::math::constants::pi<double>())
;
}
} constant;
struct ufunc_ : x3::symbols<double (*)(double)> {
ufunc_() {
add
("abs" , static_cast<double (*)(double)>(&std::abs))
;
}
} ufunc;
struct bfunc_ : x3::symbols<double (*)(double, double)> {
bfunc_() {
add
("max" , static_cast<double (*)(double, double)>(&std::fmax))
;
}
} bfunc;
struct unary_op_ : x3::symbols<double (*)(double)> {
unary_op_() {
add
("+", static_cast<double (*)(double)>(&math::plus))
("-", static_cast<double (*)(double)>(&math::minus))
("!", static_cast<double (*)(double)>(&math::unary_not))
;
}
} unary_op;
struct additive_op_ : x3::symbols<double (*)(double, double)> {
additive_op_() {
add
("+", static_cast<double (*)(double, double)>(&math::plus))
("-", static_cast<double (*)(double, double)>(&math::minus))
;
}
} additive_op;
struct multiplicative_op_ : x3::symbols<double (*)(double, double)> {
multiplicative_op_() {
add
("*", static_cast<double (*)(double, double)>(&math::multiplies))
("/", static_cast<double (*)(double, double)>(&math::divides))
("%", static_cast<double (*)(double, double)>(&std::fmod))
;
}
} multiplicative_op;
struct logical_op_ : x3::symbols<double (*)(double, double)> {
logical_op_() {
add
("&&", static_cast<double (*)(double, double)>(&math::logical_and))
("||", static_cast<double (*)(double, double)>(&math::logical_or))
;
}
} logical_op;
struct relational_op_ : x3::symbols<double (*)(double, double)> {
relational_op_() {
add
("<" , static_cast<double (*)(double, double)>(&math::less))
("<=", static_cast<double (*)(double, double)>(&math::less_equals))
(">" , static_cast<double (*)(double, double)>(&math::greater))
(">=", static_cast<double (*)(double, double)>(&math::greater_equals))
;
}
} relational_op;
struct equality_op_ : x3::symbols<double (*)(double, double)> {
equality_op_() {
add
("==", static_cast<double (*)(double, double)>(&math::equals))
("!=", static_cast<double (*)(double, double)>(&math::not_equals))
;
}
} equality_op;
struct power_ : x3::symbols<double (*)(double, double)> {
power_() {
add
("**", static_cast<double (*)(double, double)>(&std::pow))
;
}
} power;
更完整的语法和ast属性的定义如下(根据Boost Spirit x3 conditional (ternary) operator parser中的答案修改)
struct expression_class;
struct logical_class;
struct equality_class;
struct relational_class;
struct additive_class;
struct multiplicative_class;
struct factor_class;
struct primary_class;
struct unary_class;
struct binary_class;
struct conditional_class;
struct variable_class;
// Rule declarations
auto const expression = x3::rule<expression_class , ast::expression >{"expression"};
auto const logical = x3::rule<logical_class , ast::expression >{"logical"};
auto const equality = x3::rule<equality_class , ast::expression >{"equality"};
auto const relational = x3::rule<relational_class , ast::expression >{"relational"};
auto const additive = x3::rule<additive_class , ast::expression >{"additive"};
auto const multiplicative = x3::rule<multiplicative_class, ast::expression >{"multiplicative"};
auto const factor = x3::rule<factor_class , ast::expression >{"factor"};
auto const primary = x3::rule<primary_class , ast::operand >{"primary"};
auto const unary = x3::rule<unary_class , ast::unary_op >{"unary"};
auto const binary = x3::rule<binary_class , ast::binary_op >{"binary"};
auto const conditional = x3::rule<conditional_class , ast::conditional_op>{"conditional"};
auto const variable = x3::rule<variable_class , std::string >{"variable"};
// Rule defintions
/* This is a bit of magic to me. Does this definition now say that expression
itself is now initializer list constructible from the conditional (which is spelled below)?
*/
auto const expression_def =
conditional
;
/* now ast::conditional_op type should be constructible from an initialization list consisting
of of an expression and optional<tuple<expression,expression>> ? How these types should be
spelled in the struct? There is a circular reference between expression and conditional :D ?
*/
auto const conditional_def =
logical >> -('?' > expression > ':'> expression)
;
auto const logical_def =
equality >> *(logical_op > equality)
;
auto const equality_def =
relational >> *(equality_op > relational)
;
auto const relational_def =
additive >> *(relational_op > additive)
;
auto const additive_def =
multiplicative >> *(additive_op > multiplicative)
;
auto const multiplicative_def =
factor >> *(multiplicative_op > factor)
;
auto const factor_def =
primary >> *( power > factor )
;
auto const unary_def =
ufunc > '(' > expression > ')'
;
auto const binary_def =
bfunc > '(' > expression > ',' > expression > ')'
;
auto const primary_def =
x3::double_
| ('(' > expression > ')')
| (unary_op > primary)
| binary
| unary
// | conditional // by removing the conditional from primary implies the type of x3::variant changes
| variable
;
BOOST_SPIRIT_DEFINE(
expression,
logical,
equality,
relational,
additive,
multiplicative,
factor,
primary,
unary,
binary,
conditional,
variable
)
下面是如何使用 boost static visitor 遍历 AST 来评估带有变量符号的表达式 table
namespace ast {
// Evaluator
struct Evaluator {
using result_type = double;
explicit Evaluator(std::map<std::string, double> sym);
double operator()(nil) const;
double operator()(double n) const;
double operator()(std::string const &c) const;
double operator()(operation const &x, double lhs) const;
double operator()(unary_op const &x) const;
double operator()(binary_op const &x) const;
double operator()(conditional_op const &x) const;
double operator()(expression const &x) const;
private:
std::map<std::string, double> st;
};
Evaluator::Evaluator(std::map<std::string, double> sym)
: st(std::move(sym)) {}
double Evaluator::operator()(nil) const {
BOOST_ASSERT(0);
return 0;
}
double Evaluator::operator()(double n) const { return n; }
double Evaluator::operator()(std::string const &c) const {
auto it = st.find(c);
if (it == st.end()) {
throw std::invalid_argument("Unknown variable " + c);
}
return it->second;
}
double Evaluator::operator()(operation const &x, double lhs) const {
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(lhs, rhs);
}
double Evaluator::operator()(unary_op const &x) const {
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(rhs);
}
double Evaluator::operator()(binary_op const &x) const {
double lhs = boost::apply_visitor(*this, x.lhs);
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(lhs, rhs);
}
double Evaluator::operator()(conditional_op const &x) const {
return static_cast<bool>(boost::apply_visitor(*this, x.lhs))
? boost::apply_visitor(*this, x.rhs_true)
: boost::apply_visitor(*this, x.rhs_false);
}
double Evaluator::operator()(expression const &x) const {
double state = boost::apply_visitor(*this, x.lhs);
for (operation const &oper : x.rhs) {
state = (*this)(oper, state);
}
return state;
}
} // namespace ast
因此,暴露的顶级属性是 expression
,坦率地说,它根本不代表表达式。
相反,它代表了一个人为的表达输入语法单元,也许可以称为 "operation_chain"。
这也会让你很难使用你的 AST 进行语义正确的转换(比如表达式求值),因为像操作优先级这样的关键信息没有编码在其中。
In fact, if we're not careful it's very possible that this information - if present in the input - would be lost. I think it's possible in practice to go from your AST and reconstruct the operation tree with dependent operations in order of their precedence. But I usually err on the safe side of explicitly modeling the expression tree to reflect the operation dependencies.
也就是说,conditional_op
不是链接二进制操作,因此它不符合模型。我建议让 "top level" 规则公开一个 ast::operand
(这样它就可以适合 conditional_op
或 expression
)。
但是,由于 "lazy" 我们检测条件的方式,这需要一些语义操作来实际构建正确的属性:
auto const conditional_def =
logical [([](auto& ctx) { _val(ctx) = _attr(ctx); })]
>> -('?' > expression > ':' > expression) [make_conditional_op]
;
第一个语义动作是直截了当的,第二个语义动作变得足够大以使其超出行外定义:
auto make_conditional_op = [](auto& ctx) {
using boost::fusion::at_c;
x3::_val(ctx) = ast::conditional_op {
x3::_val(ctx),
at_c<0>(x3::_attr(ctx)),
at_c<1>(x3::_attr(ctx)) };
};
仍然直截了当但笨拙。请注意,原因是我们根据可选分支的存在公开了不同的类型。
这是所有的工作:
//#define BOOST_SPIRIT_X3_DEBUG
//#define DEBUG_SYMBOLS
#include <iostream>
#include <functional>
#include <iomanip>
#include <list>
#include <boost/fusion/adapted/struct.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/spirit/home/x3.hpp>
#include <boost/spirit/home/x3/support/ast/variant.hpp>
namespace x3 = boost::spirit::x3;
namespace ast {
struct nil {};
struct unary_op;
struct binary_op;
struct conditional_op;
struct expression;
using UnFunc = std::function<double(double)>;
using BinFunc = std::function<double(double, double)>;
struct operand : x3::variant<
nil
, double
, std::string
, x3::forward_ast<unary_op>
, x3::forward_ast<binary_op>
, x3::forward_ast<conditional_op>
, x3::forward_ast<expression> >
{
using base_type::base_type;
using base_type::operator=;
};
struct unary_op {
UnFunc op;
operand rhs;
};
struct binary_op {
BinFunc op;
operand lhs;
operand rhs;
};
struct conditional_op {
operand lhs;
operand rhs_true;
operand rhs_false;
};
struct operation {
BinFunc op;
operand rhs;
};
struct expression {
operand lhs;
std::list<operation> rhs;
};
} // namespace ast
BOOST_FUSION_ADAPT_STRUCT(ast::expression, lhs, rhs)
BOOST_FUSION_ADAPT_STRUCT(ast::operation, op, rhs)
BOOST_FUSION_ADAPT_STRUCT(ast::conditional_op, lhs, rhs_true, rhs_false)
BOOST_FUSION_ADAPT_STRUCT(ast::binary_op, op, lhs, rhs)
BOOST_FUSION_ADAPT_STRUCT(ast::unary_op, op, rhs)
namespace P {
struct ehbase {
template <typename It, typename Ctx>
x3::error_handler_result on_error(It f, It l, x3::expectation_failure<It> const& e, Ctx const& /*ctx*/) const {
std::cout << std::string(f,l) << "\n"
<< std::setw(1+std::distance(f, e.where())) << "^"
<< "-- expected: " << e.which() << "\n";
return x3::error_handler_result::fail;
}
};
struct expression_class : ehbase {};
struct logical_class : ehbase {};
struct equality_class : ehbase {};
struct relational_class : ehbase {};
struct additive_class : ehbase {};
struct multiplicative_class : ehbase {};
struct factor_class : ehbase {};
struct primary_class : ehbase {};
struct unary_class : ehbase {};
struct binary_class : ehbase {};
struct conditional_class : ehbase {};
struct variable_class : ehbase {};
// Rule declarations
auto const expression = x3::rule<expression_class , ast::operand >{"expression"};
auto const conditional = x3::rule<conditional_class , ast::operand >{"conditional"};
auto const primary = x3::rule<primary_class , ast::operand >{"primary"};
auto const logical = x3::rule<logical_class , ast::expression >{"logical"};
auto const equality = x3::rule<equality_class , ast::expression >{"equality"};
auto const relational = x3::rule<relational_class , ast::expression >{"relational"};
auto const additive = x3::rule<additive_class , ast::expression >{"additive"};
auto const multiplicative = x3::rule<multiplicative_class, ast::expression >{"multiplicative"};
auto const factor = x3::rule<factor_class , ast::expression >{"factor"};
auto const unary = x3::rule<unary_class , ast::unary_op >{"unary"};
auto const binary = x3::rule<binary_class , ast::binary_op >{"binary"};
auto const variable = x3::rule<variable_class , std::string >{"variable"};
struct constant_ : x3::symbols<double> {
constant_() {
this->add
("e" , boost::math::constants::e<double>())
("pi" , boost::math::constants::pi<double>())
;
}
} constant;
struct ufunc_ : x3::symbols<ast::UnFunc> {
ufunc_() {
this->add
("abs" , &std::abs<double>)
;
}
} ufunc;
struct bfunc_ : x3::symbols<ast::BinFunc> {
bfunc_() {
this->add
("max" , [](double a,double b){ return std::fmax(a,b); })
("min" , [](double a,double b){ return std::fmin(a,b); })
("pow" , [](double a,double b){ return std::pow(a,b); })
;
}
} bfunc;
struct unary_op_ : x3::symbols<ast::UnFunc> {
unary_op_() {
this->add
("+", [](double v) { return +v; })
("-", std::negate{})
("!", [](double v) { return !v; })
;
}
} unary_op;
struct additive_op_ : x3::symbols<ast::BinFunc> {
additive_op_() {
this->add
("+", std::plus{})
("-", std::minus{})
;
}
} additive_op;
struct multiplicative_op_ : x3::symbols<ast::BinFunc> {
multiplicative_op_() {
this->add
("*", std::multiplies<>{})
("/", std::divides<>{})
("%", [](double a, double b) { return std::fmod(a, b); })
;
}
} multiplicative_op;
struct logical_op_ : x3::symbols<ast::BinFunc> {
logical_op_() {
this->add
("&&", std::logical_and{})
("||", std::logical_or{})
;
}
} logical_op;
struct relational_op_ : x3::symbols<ast::BinFunc> {
relational_op_() {
this->add
("<" , std::less{})
("<=", std::less_equal{})
(">" , std::greater{})
(">=", std::greater_equal{})
;
}
} relational_op;
struct equality_op_ : x3::symbols<ast::BinFunc> {
equality_op_() {
this->add
("==", std::equal_to{})
("!=", std::not_equal_to{})
;
}
} equality_op;
struct power_ : x3::symbols<ast::BinFunc> {
power_() {
this->add
("**", [](double v, double exp) { return std::pow(v, exp); })
;
}
} power;
auto const variable_def = x3::lexeme[x3::alpha >> *x3::alnum];
// Rule defintions
auto const expression_def =
conditional
;
auto make_conditional_op = [](auto& ctx) {
using boost::fusion::at_c;
x3::_val(ctx) = ast::conditional_op {
x3::_val(ctx),
at_c<0>(x3::_attr(ctx)),
at_c<1>(x3::_attr(ctx)) };
};
auto const conditional_def =
logical [([](auto& ctx) { _val(ctx) = _attr(ctx); })]
>> -('?' > expression > ':' > expression) [make_conditional_op]
;
auto const logical_def =
equality >> *(logical_op > equality)
;
auto const equality_def =
relational >> *(equality_op > relational)
;
auto const relational_def =
additive >> *(relational_op > additive)
;
auto const additive_def =
multiplicative >> *(additive_op > multiplicative)
;
auto const multiplicative_def =
factor >> *(multiplicative_op > factor)
;
auto const factor_def =
primary >> *( power > factor )
;
auto const unary_def
= (unary_op > primary)
| (ufunc > '(' > expression > ')')
;
auto const binary_def =
bfunc > '(' > expression > ',' > expression > ')'
;
auto const primary_def =
x3::double_
| ('(' > expression > ')')
//| (unary_op > primary)
| binary
| unary
| constant
| variable
;
BOOST_SPIRIT_DEFINE(expression)
BOOST_SPIRIT_DEFINE(logical)
BOOST_SPIRIT_DEFINE(equality)
BOOST_SPIRIT_DEFINE(relational)
BOOST_SPIRIT_DEFINE(additive)
BOOST_SPIRIT_DEFINE(multiplicative)
BOOST_SPIRIT_DEFINE(factor)
BOOST_SPIRIT_DEFINE(primary)
BOOST_SPIRIT_DEFINE(unary)
BOOST_SPIRIT_DEFINE(binary)
BOOST_SPIRIT_DEFINE(conditional)
BOOST_SPIRIT_DEFINE(variable)
}
int main() {
for (std::string const input : {
"x+(3**pow(2,8))",
"1 + (2 + abs(x))",
"min(x,1+y)",
"(x > y ? 1 : 0) * (y - z)",
"min(3**4,7))",
"3***4",
"(3,4)",
})
{
std::cout << " ===== " << std::quoted(input) << " =====\n";
auto f = begin(input), l = end(input);
ast::operand out;
if (phrase_parse(f, l, P::expression, x3::space, out)) {
std::cout << "Success\n";
} else {
std::cout << "Failed\n";
}
if (f!=l) {
std::cout << "Unparsed: " << std::quoted(std::string(f,l)) << "\n";
}
}
}
打印
===== "x+(3**pow(2,8))" =====
Success
===== "1 + (2 + abs(x))" =====
Success
===== "min(x,1+y)" =====
Success
===== "(x > y ? 1 : 0) * (y - z)" =====
Success
===== "min(3**4,7))" =====
Success
Unparsed: ")"
===== "3***4" =====
3***4
^-- expected: factor
Failed
Unparsed: "3***4"
===== "(3,4)" =====
(3,4)
^-- expected: ')'
Failed
Unparsed: "(3,4)"
我觉得应该可以
- 更优雅(Boost Spirit: "Semantic actions are evil"?)
- 更符合语义的表达方式
但遗憾的是我没有时间处理它,所以暂时就这样:)
这个问题是
中那个问题的后续问题Boost Spirit x3 conditional (ternary) operator parser
原始问题上下文没有显示(我的错!)ast 属性,因此答案无法考虑所有移动部分。这个问题现在展示了 ast 属性的样子,以及 ast 是如何用符号 table.
来计算表达式的。因此,后续问题是正确拼写的三元条件应如何更改 ast 类型以及条件和表达式如何相互作用(根据我的理解,它现在不是 x3::variant 的一部分,因为它将从主要解析器选择中删除)
这是 ast 属性和声明的符号定义的样子
namespace x3 = boost::spirit::x3;
namespace ast {
struct nil {};
struct unary_op;
struct binary_op;
struct conditional_op;
struct expression;
struct operand : x3::variant<
nil
, double
, std::string
, x3::forward_ast<unary_op>
, x3::forward_ast<binary_op>
//, x3::forward_ast<conditional_op> // conditional_op not here?
, x3::forward_ast<expression>
> {
using base_type::base_type;
using base_type::operator=;
};
struct unary_op {
double (*op)(double);
operand rhs;
};
struct binary_op {
double (*op)(double, double);
operand lhs;
operand rhs;
};
/*
struct conditional_op {
operand lhs;
operand rhs_true;
operand rhs_false;
};
*/
struct conditional_op {
expression lhs;
// how the exact type is spelled?
optional<expression, expression> maybe_rhs;
};
struct operation {
double (*op)(double, double);
operand rhs;
};
// what is the type of expression ?
struct expression {
conditional_op conditional;
};
/*
struct expression {
operand lhs;
std::list<operation> rhs;
};
*/
} // namespace ast
struct constant_ : x3::symbols<double> {
constant_() {
add
("e" , boost::math::constants::e<double>())
("pi" , boost::math::constants::pi<double>())
;
}
} constant;
struct ufunc_ : x3::symbols<double (*)(double)> {
ufunc_() {
add
("abs" , static_cast<double (*)(double)>(&std::abs))
;
}
} ufunc;
struct bfunc_ : x3::symbols<double (*)(double, double)> {
bfunc_() {
add
("max" , static_cast<double (*)(double, double)>(&std::fmax))
;
}
} bfunc;
struct unary_op_ : x3::symbols<double (*)(double)> {
unary_op_() {
add
("+", static_cast<double (*)(double)>(&math::plus))
("-", static_cast<double (*)(double)>(&math::minus))
("!", static_cast<double (*)(double)>(&math::unary_not))
;
}
} unary_op;
struct additive_op_ : x3::symbols<double (*)(double, double)> {
additive_op_() {
add
("+", static_cast<double (*)(double, double)>(&math::plus))
("-", static_cast<double (*)(double, double)>(&math::minus))
;
}
} additive_op;
struct multiplicative_op_ : x3::symbols<double (*)(double, double)> {
multiplicative_op_() {
add
("*", static_cast<double (*)(double, double)>(&math::multiplies))
("/", static_cast<double (*)(double, double)>(&math::divides))
("%", static_cast<double (*)(double, double)>(&std::fmod))
;
}
} multiplicative_op;
struct logical_op_ : x3::symbols<double (*)(double, double)> {
logical_op_() {
add
("&&", static_cast<double (*)(double, double)>(&math::logical_and))
("||", static_cast<double (*)(double, double)>(&math::logical_or))
;
}
} logical_op;
struct relational_op_ : x3::symbols<double (*)(double, double)> {
relational_op_() {
add
("<" , static_cast<double (*)(double, double)>(&math::less))
("<=", static_cast<double (*)(double, double)>(&math::less_equals))
(">" , static_cast<double (*)(double, double)>(&math::greater))
(">=", static_cast<double (*)(double, double)>(&math::greater_equals))
;
}
} relational_op;
struct equality_op_ : x3::symbols<double (*)(double, double)> {
equality_op_() {
add
("==", static_cast<double (*)(double, double)>(&math::equals))
("!=", static_cast<double (*)(double, double)>(&math::not_equals))
;
}
} equality_op;
struct power_ : x3::symbols<double (*)(double, double)> {
power_() {
add
("**", static_cast<double (*)(double, double)>(&std::pow))
;
}
} power;
更完整的语法和ast属性的定义如下(根据Boost Spirit x3 conditional (ternary) operator parser中的答案修改)
struct expression_class;
struct logical_class;
struct equality_class;
struct relational_class;
struct additive_class;
struct multiplicative_class;
struct factor_class;
struct primary_class;
struct unary_class;
struct binary_class;
struct conditional_class;
struct variable_class;
// Rule declarations
auto const expression = x3::rule<expression_class , ast::expression >{"expression"};
auto const logical = x3::rule<logical_class , ast::expression >{"logical"};
auto const equality = x3::rule<equality_class , ast::expression >{"equality"};
auto const relational = x3::rule<relational_class , ast::expression >{"relational"};
auto const additive = x3::rule<additive_class , ast::expression >{"additive"};
auto const multiplicative = x3::rule<multiplicative_class, ast::expression >{"multiplicative"};
auto const factor = x3::rule<factor_class , ast::expression >{"factor"};
auto const primary = x3::rule<primary_class , ast::operand >{"primary"};
auto const unary = x3::rule<unary_class , ast::unary_op >{"unary"};
auto const binary = x3::rule<binary_class , ast::binary_op >{"binary"};
auto const conditional = x3::rule<conditional_class , ast::conditional_op>{"conditional"};
auto const variable = x3::rule<variable_class , std::string >{"variable"};
// Rule defintions
/* This is a bit of magic to me. Does this definition now say that expression
itself is now initializer list constructible from the conditional (which is spelled below)?
*/
auto const expression_def =
conditional
;
/* now ast::conditional_op type should be constructible from an initialization list consisting
of of an expression and optional<tuple<expression,expression>> ? How these types should be
spelled in the struct? There is a circular reference between expression and conditional :D ?
*/
auto const conditional_def =
logical >> -('?' > expression > ':'> expression)
;
auto const logical_def =
equality >> *(logical_op > equality)
;
auto const equality_def =
relational >> *(equality_op > relational)
;
auto const relational_def =
additive >> *(relational_op > additive)
;
auto const additive_def =
multiplicative >> *(additive_op > multiplicative)
;
auto const multiplicative_def =
factor >> *(multiplicative_op > factor)
;
auto const factor_def =
primary >> *( power > factor )
;
auto const unary_def =
ufunc > '(' > expression > ')'
;
auto const binary_def =
bfunc > '(' > expression > ',' > expression > ')'
;
auto const primary_def =
x3::double_
| ('(' > expression > ')')
| (unary_op > primary)
| binary
| unary
// | conditional // by removing the conditional from primary implies the type of x3::variant changes
| variable
;
BOOST_SPIRIT_DEFINE(
expression,
logical,
equality,
relational,
additive,
multiplicative,
factor,
primary,
unary,
binary,
conditional,
variable
)
下面是如何使用 boost static visitor 遍历 AST 来评估带有变量符号的表达式 table
namespace ast {
// Evaluator
struct Evaluator {
using result_type = double;
explicit Evaluator(std::map<std::string, double> sym);
double operator()(nil) const;
double operator()(double n) const;
double operator()(std::string const &c) const;
double operator()(operation const &x, double lhs) const;
double operator()(unary_op const &x) const;
double operator()(binary_op const &x) const;
double operator()(conditional_op const &x) const;
double operator()(expression const &x) const;
private:
std::map<std::string, double> st;
};
Evaluator::Evaluator(std::map<std::string, double> sym)
: st(std::move(sym)) {}
double Evaluator::operator()(nil) const {
BOOST_ASSERT(0);
return 0;
}
double Evaluator::operator()(double n) const { return n; }
double Evaluator::operator()(std::string const &c) const {
auto it = st.find(c);
if (it == st.end()) {
throw std::invalid_argument("Unknown variable " + c);
}
return it->second;
}
double Evaluator::operator()(operation const &x, double lhs) const {
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(lhs, rhs);
}
double Evaluator::operator()(unary_op const &x) const {
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(rhs);
}
double Evaluator::operator()(binary_op const &x) const {
double lhs = boost::apply_visitor(*this, x.lhs);
double rhs = boost::apply_visitor(*this, x.rhs);
return x.op(lhs, rhs);
}
double Evaluator::operator()(conditional_op const &x) const {
return static_cast<bool>(boost::apply_visitor(*this, x.lhs))
? boost::apply_visitor(*this, x.rhs_true)
: boost::apply_visitor(*this, x.rhs_false);
}
double Evaluator::operator()(expression const &x) const {
double state = boost::apply_visitor(*this, x.lhs);
for (operation const &oper : x.rhs) {
state = (*this)(oper, state);
}
return state;
}
} // namespace ast
因此,暴露的顶级属性是 expression
,坦率地说,它根本不代表表达式。
相反,它代表了一个人为的表达输入语法单元,也许可以称为 "operation_chain"。
这也会让你很难使用你的 AST 进行语义正确的转换(比如表达式求值),因为像操作优先级这样的关键信息没有编码在其中。
In fact, if we're not careful it's very possible that this information - if present in the input - would be lost. I think it's possible in practice to go from your AST and reconstruct the operation tree with dependent operations in order of their precedence. But I usually err on the safe side of explicitly modeling the expression tree to reflect the operation dependencies.
也就是说,conditional_op
不是链接二进制操作,因此它不符合模型。我建议让 "top level" 规则公开一个 ast::operand
(这样它就可以适合 conditional_op
或 expression
)。
但是,由于 "lazy" 我们检测条件的方式,这需要一些语义操作来实际构建正确的属性:
auto const conditional_def =
logical [([](auto& ctx) { _val(ctx) = _attr(ctx); })]
>> -('?' > expression > ':' > expression) [make_conditional_op]
;
第一个语义动作是直截了当的,第二个语义动作变得足够大以使其超出行外定义:
auto make_conditional_op = [](auto& ctx) {
using boost::fusion::at_c;
x3::_val(ctx) = ast::conditional_op {
x3::_val(ctx),
at_c<0>(x3::_attr(ctx)),
at_c<1>(x3::_attr(ctx)) };
};
仍然直截了当但笨拙。请注意,原因是我们根据可选分支的存在公开了不同的类型。
这是所有的工作:
//#define BOOST_SPIRIT_X3_DEBUG
//#define DEBUG_SYMBOLS
#include <iostream>
#include <functional>
#include <iomanip>
#include <list>
#include <boost/fusion/adapted/struct.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/spirit/home/x3.hpp>
#include <boost/spirit/home/x3/support/ast/variant.hpp>
namespace x3 = boost::spirit::x3;
namespace ast {
struct nil {};
struct unary_op;
struct binary_op;
struct conditional_op;
struct expression;
using UnFunc = std::function<double(double)>;
using BinFunc = std::function<double(double, double)>;
struct operand : x3::variant<
nil
, double
, std::string
, x3::forward_ast<unary_op>
, x3::forward_ast<binary_op>
, x3::forward_ast<conditional_op>
, x3::forward_ast<expression> >
{
using base_type::base_type;
using base_type::operator=;
};
struct unary_op {
UnFunc op;
operand rhs;
};
struct binary_op {
BinFunc op;
operand lhs;
operand rhs;
};
struct conditional_op {
operand lhs;
operand rhs_true;
operand rhs_false;
};
struct operation {
BinFunc op;
operand rhs;
};
struct expression {
operand lhs;
std::list<operation> rhs;
};
} // namespace ast
BOOST_FUSION_ADAPT_STRUCT(ast::expression, lhs, rhs)
BOOST_FUSION_ADAPT_STRUCT(ast::operation, op, rhs)
BOOST_FUSION_ADAPT_STRUCT(ast::conditional_op, lhs, rhs_true, rhs_false)
BOOST_FUSION_ADAPT_STRUCT(ast::binary_op, op, lhs, rhs)
BOOST_FUSION_ADAPT_STRUCT(ast::unary_op, op, rhs)
namespace P {
struct ehbase {
template <typename It, typename Ctx>
x3::error_handler_result on_error(It f, It l, x3::expectation_failure<It> const& e, Ctx const& /*ctx*/) const {
std::cout << std::string(f,l) << "\n"
<< std::setw(1+std::distance(f, e.where())) << "^"
<< "-- expected: " << e.which() << "\n";
return x3::error_handler_result::fail;
}
};
struct expression_class : ehbase {};
struct logical_class : ehbase {};
struct equality_class : ehbase {};
struct relational_class : ehbase {};
struct additive_class : ehbase {};
struct multiplicative_class : ehbase {};
struct factor_class : ehbase {};
struct primary_class : ehbase {};
struct unary_class : ehbase {};
struct binary_class : ehbase {};
struct conditional_class : ehbase {};
struct variable_class : ehbase {};
// Rule declarations
auto const expression = x3::rule<expression_class , ast::operand >{"expression"};
auto const conditional = x3::rule<conditional_class , ast::operand >{"conditional"};
auto const primary = x3::rule<primary_class , ast::operand >{"primary"};
auto const logical = x3::rule<logical_class , ast::expression >{"logical"};
auto const equality = x3::rule<equality_class , ast::expression >{"equality"};
auto const relational = x3::rule<relational_class , ast::expression >{"relational"};
auto const additive = x3::rule<additive_class , ast::expression >{"additive"};
auto const multiplicative = x3::rule<multiplicative_class, ast::expression >{"multiplicative"};
auto const factor = x3::rule<factor_class , ast::expression >{"factor"};
auto const unary = x3::rule<unary_class , ast::unary_op >{"unary"};
auto const binary = x3::rule<binary_class , ast::binary_op >{"binary"};
auto const variable = x3::rule<variable_class , std::string >{"variable"};
struct constant_ : x3::symbols<double> {
constant_() {
this->add
("e" , boost::math::constants::e<double>())
("pi" , boost::math::constants::pi<double>())
;
}
} constant;
struct ufunc_ : x3::symbols<ast::UnFunc> {
ufunc_() {
this->add
("abs" , &std::abs<double>)
;
}
} ufunc;
struct bfunc_ : x3::symbols<ast::BinFunc> {
bfunc_() {
this->add
("max" , [](double a,double b){ return std::fmax(a,b); })
("min" , [](double a,double b){ return std::fmin(a,b); })
("pow" , [](double a,double b){ return std::pow(a,b); })
;
}
} bfunc;
struct unary_op_ : x3::symbols<ast::UnFunc> {
unary_op_() {
this->add
("+", [](double v) { return +v; })
("-", std::negate{})
("!", [](double v) { return !v; })
;
}
} unary_op;
struct additive_op_ : x3::symbols<ast::BinFunc> {
additive_op_() {
this->add
("+", std::plus{})
("-", std::minus{})
;
}
} additive_op;
struct multiplicative_op_ : x3::symbols<ast::BinFunc> {
multiplicative_op_() {
this->add
("*", std::multiplies<>{})
("/", std::divides<>{})
("%", [](double a, double b) { return std::fmod(a, b); })
;
}
} multiplicative_op;
struct logical_op_ : x3::symbols<ast::BinFunc> {
logical_op_() {
this->add
("&&", std::logical_and{})
("||", std::logical_or{})
;
}
} logical_op;
struct relational_op_ : x3::symbols<ast::BinFunc> {
relational_op_() {
this->add
("<" , std::less{})
("<=", std::less_equal{})
(">" , std::greater{})
(">=", std::greater_equal{})
;
}
} relational_op;
struct equality_op_ : x3::symbols<ast::BinFunc> {
equality_op_() {
this->add
("==", std::equal_to{})
("!=", std::not_equal_to{})
;
}
} equality_op;
struct power_ : x3::symbols<ast::BinFunc> {
power_() {
this->add
("**", [](double v, double exp) { return std::pow(v, exp); })
;
}
} power;
auto const variable_def = x3::lexeme[x3::alpha >> *x3::alnum];
// Rule defintions
auto const expression_def =
conditional
;
auto make_conditional_op = [](auto& ctx) {
using boost::fusion::at_c;
x3::_val(ctx) = ast::conditional_op {
x3::_val(ctx),
at_c<0>(x3::_attr(ctx)),
at_c<1>(x3::_attr(ctx)) };
};
auto const conditional_def =
logical [([](auto& ctx) { _val(ctx) = _attr(ctx); })]
>> -('?' > expression > ':' > expression) [make_conditional_op]
;
auto const logical_def =
equality >> *(logical_op > equality)
;
auto const equality_def =
relational >> *(equality_op > relational)
;
auto const relational_def =
additive >> *(relational_op > additive)
;
auto const additive_def =
multiplicative >> *(additive_op > multiplicative)
;
auto const multiplicative_def =
factor >> *(multiplicative_op > factor)
;
auto const factor_def =
primary >> *( power > factor )
;
auto const unary_def
= (unary_op > primary)
| (ufunc > '(' > expression > ')')
;
auto const binary_def =
bfunc > '(' > expression > ',' > expression > ')'
;
auto const primary_def =
x3::double_
| ('(' > expression > ')')
//| (unary_op > primary)
| binary
| unary
| constant
| variable
;
BOOST_SPIRIT_DEFINE(expression)
BOOST_SPIRIT_DEFINE(logical)
BOOST_SPIRIT_DEFINE(equality)
BOOST_SPIRIT_DEFINE(relational)
BOOST_SPIRIT_DEFINE(additive)
BOOST_SPIRIT_DEFINE(multiplicative)
BOOST_SPIRIT_DEFINE(factor)
BOOST_SPIRIT_DEFINE(primary)
BOOST_SPIRIT_DEFINE(unary)
BOOST_SPIRIT_DEFINE(binary)
BOOST_SPIRIT_DEFINE(conditional)
BOOST_SPIRIT_DEFINE(variable)
}
int main() {
for (std::string const input : {
"x+(3**pow(2,8))",
"1 + (2 + abs(x))",
"min(x,1+y)",
"(x > y ? 1 : 0) * (y - z)",
"min(3**4,7))",
"3***4",
"(3,4)",
})
{
std::cout << " ===== " << std::quoted(input) << " =====\n";
auto f = begin(input), l = end(input);
ast::operand out;
if (phrase_parse(f, l, P::expression, x3::space, out)) {
std::cout << "Success\n";
} else {
std::cout << "Failed\n";
}
if (f!=l) {
std::cout << "Unparsed: " << std::quoted(std::string(f,l)) << "\n";
}
}
}
打印
===== "x+(3**pow(2,8))" =====
Success
===== "1 + (2 + abs(x))" =====
Success
===== "min(x,1+y)" =====
Success
===== "(x > y ? 1 : 0) * (y - z)" =====
Success
===== "min(3**4,7))" =====
Success
Unparsed: ")"
===== "3***4" =====
3***4
^-- expected: factor
Failed
Unparsed: "3***4"
===== "(3,4)" =====
(3,4)
^-- expected: ')'
Failed
Unparsed: "(3,4)"
我觉得应该可以
- 更优雅(Boost Spirit: "Semantic actions are evil"?)
- 更符合语义的表达方式
但遗憾的是我没有时间处理它,所以暂时就这样:)