从转移矩阵生成马尔可夫链

Generating Markov Chain from transition matrix

我正在尝试模拟给定转换矩阵的数据。我使用 制作了转换矩阵,所以假设我的数据是:

days=['rain', 'rain', 'rain', 'clouds', 'rain', 'sun', 'clouds', 'clouds', 
  'rain', 'sun', 'rain', 'rain', 'clouds', 'clouds', 'sun', 'sun', 
  'clouds', 'clouds', 'rain', 'clouds', 'sun', 'rain', 'rain', 'sun',
  'sun', 'clouds', 'clouds', 'rain', 'rain', 'sun', 'sun', 'rain', 
  'rain', 'sun', 'clouds', 'clouds', 'sun', 'sun', 'clouds', 'rain', 
  'rain', 'rain', 'rain', 'sun', 'sun', 'sun', 'sun', 'clouds', 'sun', 
  'clouds', 'clouds', 'sun', 'clouds', 'rain', 'sun', 'sun', 'sun', 
  'clouds', 'sun', 'rain', 'sun', 'sun', 'sun', 'sun', 'clouds', 
  'rain', 'clouds', 'clouds', 'sun', 'sun', 'sun', 'sun', 'sun', 'sun', 
  'clouds', 'clouds', 'clouds', 'clouds', 'clouds', 'sun', 'rain', 
  'rain', 'rain', 'clouds', 'sun', 'clouds', 'clouds', 'clouds', 'rain', 
  'clouds', 'rain', 'sun', 'sun', 'clouds', 'sun', 'sun', 'sun', 'sun',
  'sun', 'sun', 'rain']

我使用以下方法创建转换矩阵:

pd.crosstab(pd.Series(days[1:],name='Tomorrow'),
            pd.Series(days[:-1],name='Today'),normalize=1)

输出:

Today      clouds      rain       sun
Tomorrow                             
clouds    0.40625  0.230769  0.309524
rain      0.28125  0.423077  0.142857
sun       0.31250  0.346154  0.547619

现在,我想使用上面的矩阵生成输出。所以假设我的随机起点是 'rain',那么输出将是(例如):

[rain, rain, clouds, sun] 

不幸的是,我只能找到使用字典制作矩阵的解决方案。

编辑: 我用过:

pd.crosstab(pd.Series(word[:-1],name='Current'),
            pd.Series(word[1:],name='Next'),normalize=0)

我自己的矩阵:

Next    a    b      c          d         e   f   g   h
Current                             
a      0.0  0.0 0.428571    0.571429    0.0 0.0 0.0 0.0
b      0.0  0.0 0.230769    0.769231    0.0 0.0 0.0 0.0
c      0.0  0.0 0.000000    0.000000    0.0 0.0 1.0 0.0
d      0.0  0.0 0.000000    0.000000    0.0 0.0 0.0 1.0
e      1.0  0.0 0.000000    0.000000    0.0 0.0 0.0 0.0
f      0.0  1.0 0.000000    0.000000    0.0 0.0 0.0 0.0
g      0.0  0.0 0.000000    0.000000    1.0 0.0 0.0 0.0
h      0.0  0.0 0.000000    0.000000    0.0 1.0 0.0 0.0

以下函数应该有效 - get_next_term 在给定转移矩阵和前面的项的情况下生成链中的下一项,并且 make_chain 在给定的情况下创建长度为 n 的链转移矩阵和初始项。

代码:

import random
def get_next_term(t_s):
    return random.choices(t_s.index, t_s)[0]

def make_chain(t_m, start_term, n):
    chain = [start_term]
    for i in range(n-1):
        chain.append(get_next_term(t_m[chain[-1]]))
    return chain

用法:

>>> make_chain(transition_mat, 'rain', 5)
['rain', 'rain', 'clouds', 'clouds', 'sun']

你的数据:

>>> make_chain(transition_mat2, 'a', 8)
['a', 'e', 'g', 'c', 'a', 'e', 'g', 'c']