I am getting 'TypeError: 'numpy.float64' object is not callable'
I am getting 'TypeError: 'numpy.float64' object is not callable'
我有一个测试函数,我试图使用 scipy.optimize 最小化,但我得到错误 above.My 测试函数 A 具有介于 0-100.And 和之间的变量这些变量 (4) 加起来应该是 100.sum(A)=100.I 尝试通过以前的类似案例解决错误阅读但我可以 not.The 解决方案应该是 2500,这是最小值因为我用 gekko 优化器解决了,现在我正在尝试切换到 Scipy.Can 有人告诉我或告诉我哪里做错了吗?代码如下:
import numpy as np
from scipy.optimize import minimize
def test_function(x):
return np.dot(x, x)
A = np.zeros(4)
# bnds = ([0, 100], [0, 100], [0, 100], [0, 100])
bnds = tuple((0, 100) for x in range (len(A)))
x0 = [1, 5, 5, 1]
def constraint1(A):
sum = 100
for i in range(4):
sum = sum - A[i]
return sum
con1 = {'type': 'ineq', 'fun': constraint1}
sol = minimize(test_function(A), x0, method='SLSQP', bounds=bnds, constraints=con1)
错误如下;
Traceback (most recent call last):
File "C:/Users/Lenovo/Desktop/truss-opt/optimisation2/test_example.py", line 24, in <module>
sol = minimize(test_function(A), x0, method='SLSQP', bounds=bnds, constraints=con1)
File "C:\Users\Lenovo\Anaconda3\envs\practice1\lib\site-packages\scipy\optimize\_minimize.py", line 608, in minimize
constraints, callback=callback, **options)
File "C:\Users\Lenovo\Anaconda3\envs\practice1\lib\site-packages\scipy\optimize\slsqp.py", line 399, in _minimize_slsqp
fx = func(x)
File "C:\Users\Lenovo\Anaconda3\envs\practice1\lib\site-packages\scipy\optimize\optimize.py", line 326, in function_wrapper
return function(*(wrapper_args + args))
TypeError: 'numpy.float64' object is not callable
Process finished with exit code 1
您需要将函数名称发送给 minimize() 而不是调用它。更改后的代码为
sol = minimize(test_function, x0, method='SLSQP', bounds=bnds, constraints=con1)
如果你想优化test_function。如果要优化 constraint1.
,请将 test_function 替换为 constraint1
我有一个测试函数,我试图使用 scipy.optimize 最小化,但我得到错误 above.My 测试函数 A 具有介于 0-100.And 和之间的变量这些变量 (4) 加起来应该是 100.sum(A)=100.I 尝试通过以前的类似案例解决错误阅读但我可以 not.The 解决方案应该是 2500,这是最小值因为我用 gekko 优化器解决了,现在我正在尝试切换到 Scipy.Can 有人告诉我或告诉我哪里做错了吗?代码如下:
import numpy as np
from scipy.optimize import minimize
def test_function(x):
return np.dot(x, x)
A = np.zeros(4)
# bnds = ([0, 100], [0, 100], [0, 100], [0, 100])
bnds = tuple((0, 100) for x in range (len(A)))
x0 = [1, 5, 5, 1]
def constraint1(A):
sum = 100
for i in range(4):
sum = sum - A[i]
return sum
con1 = {'type': 'ineq', 'fun': constraint1}
sol = minimize(test_function(A), x0, method='SLSQP', bounds=bnds, constraints=con1)
错误如下;
Traceback (most recent call last):
File "C:/Users/Lenovo/Desktop/truss-opt/optimisation2/test_example.py", line 24, in <module>
sol = minimize(test_function(A), x0, method='SLSQP', bounds=bnds, constraints=con1)
File "C:\Users\Lenovo\Anaconda3\envs\practice1\lib\site-packages\scipy\optimize\_minimize.py", line 608, in minimize
constraints, callback=callback, **options)
File "C:\Users\Lenovo\Anaconda3\envs\practice1\lib\site-packages\scipy\optimize\slsqp.py", line 399, in _minimize_slsqp
fx = func(x)
File "C:\Users\Lenovo\Anaconda3\envs\practice1\lib\site-packages\scipy\optimize\optimize.py", line 326, in function_wrapper
return function(*(wrapper_args + args))
TypeError: 'numpy.float64' object is not callable
Process finished with exit code 1
您需要将函数名称发送给 minimize() 而不是调用它。更改后的代码为
sol = minimize(test_function, x0, method='SLSQP', bounds=bnds, constraints=con1)
如果你想优化test_function。如果要优化 constraint1.
,请将 test_function 替换为 constraint1