Python 到 ML.NET 图像中的自定义对象检测
Python to ML.NET Custom Object Detection in image
我训练了一个可以在图像中找到自定义对象的自定义模型。
我用了一个很棒的 article
非常感谢Evan EdjeElectronics。
此 python 代码工作正常:
import cv2
import numpy as np
import tensorflow as tf
PATH_TO_CKPT = os.path.join(CWD_PATH, 'model.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
# Path to image
PATH_TO_IMAGE = "D:\documents\_1.jpg"
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a , whersingle-column arraye each item in the column has the pixel RGB value
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
现在我正尝试在 ML.NET
中使用我的 tensorflow 模型
// For checking tensor names, you can open the TF model .pb file with tools like Netron: https://github.com/lutzroeder/netron
public struct TensorFlowModelSettings
{
// Input tensor name.
public const string inputTensorName = "image_tensor:0";
// Output tensor name.
public const string outputTensorName = "detection_boxes:0";
}
/// <summary>
/// Setup ML.NET model by tensorFlow .pb model file
/// </summary>
/// <param name="tensorFlowModelFilePath">Full path for .pb model file</param>
private ITransformer SetupMlnetModel(string tensorFlowModelFilePath)
{
var pipeline = _mlContext.Transforms
.ResizeImages(
outputColumnName: TensorFlowModelSettings.inputTensorName,
imageWidth: ImageSettings.imageWidth,
imageHeight: ImageSettings.imageHeight,
inputColumnName: nameof(ImageInputData.Image))
.Append(_mlContext.Transforms.ExtractPixels(
outputColumnName: TensorFlowModelSettings.inputTensorName,
interleavePixelColors: ImageSettings.channelsLast,
offsetImage: ImageSettings.mean))
.Append(_mlContext.Model.LoadTensorFlowModel(tensorFlowModelFilePath)
.ScoreTensorFlowModel(outputColumnNames: new[] { TensorFlowModelSettings.outputTensorName },
inputColumnNames: new[] { TensorFlowModelSettings.inputTensorName },
addBatchDimensionInput: false));
ITransformer mlModel = pipeline.Fit(CreateEmptyDataView());
return mlModel;
}
逐步使用 instruction - 我在调用方法 pipeline.Fit:
时出错
System.ArgumentOutOfRangeException: 'Schema mismatch for input column 'image_tensor:0': expected Byte, got Single
Arg_ParamName_Name
Link to image with code
解决了这个问题
using (var graph = new TFGraph ()) {
var model = File.ReadAllBytes (modelFile);
graph.Import (new TFBuffer (model));
using (var session = new TFSession (graph)) {
Console.WriteLine("Detecting objects");
foreach (var tuple in fileTuples) {
//var tensor = ImageUtil.CreateTensorFromImageFile (tuple.input, TFDataType.UInt8);
var tensor = ImageUtil.CreateTensorFromImageFileAlt (tuple.input, TFDataType.UInt8);
var runner = session.GetRunner ();
runner
.AddInput (graph ["image_tensor"] [0], tensor)
.Fetch (
graph ["detection_boxes"] [0],
graph ["detection_scores"] [0],
graph ["detection_classes"] [0],
graph ["num_detections"] [0]);
var output = runner.Run ();
var boxes = (float [,,])output [0].GetValue (jagged: false);
var scores = (float [,])output [1].GetValue (jagged: false);
var classes = (float [,])output [2].GetValue (jagged: false);
var num = (float [])output [3].GetValue (jagged: false);
DrawBoxes (boxes, scores, classes, tuple.input, tuple.output, MIN_SCORE_FOR_OBJECT_HIGHLIGHTING);
Console.WriteLine($"Done. See {_output_relative}");
}
}
}
我训练了一个可以在图像中找到自定义对象的自定义模型。 我用了一个很棒的 article
非常感谢Evan EdjeElectronics。
此 python 代码工作正常:
import cv2
import numpy as np
import tensorflow as tf
PATH_TO_CKPT = os.path.join(CWD_PATH, 'model.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
# Path to image
PATH_TO_IMAGE = "D:\documents\_1.jpg"
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a , whersingle-column arraye each item in the column has the pixel RGB value
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
现在我正尝试在 ML.NET
中使用我的 tensorflow 模型// For checking tensor names, you can open the TF model .pb file with tools like Netron: https://github.com/lutzroeder/netron
public struct TensorFlowModelSettings
{
// Input tensor name.
public const string inputTensorName = "image_tensor:0";
// Output tensor name.
public const string outputTensorName = "detection_boxes:0";
}
/// <summary>
/// Setup ML.NET model by tensorFlow .pb model file
/// </summary>
/// <param name="tensorFlowModelFilePath">Full path for .pb model file</param>
private ITransformer SetupMlnetModel(string tensorFlowModelFilePath)
{
var pipeline = _mlContext.Transforms
.ResizeImages(
outputColumnName: TensorFlowModelSettings.inputTensorName,
imageWidth: ImageSettings.imageWidth,
imageHeight: ImageSettings.imageHeight,
inputColumnName: nameof(ImageInputData.Image))
.Append(_mlContext.Transforms.ExtractPixels(
outputColumnName: TensorFlowModelSettings.inputTensorName,
interleavePixelColors: ImageSettings.channelsLast,
offsetImage: ImageSettings.mean))
.Append(_mlContext.Model.LoadTensorFlowModel(tensorFlowModelFilePath)
.ScoreTensorFlowModel(outputColumnNames: new[] { TensorFlowModelSettings.outputTensorName },
inputColumnNames: new[] { TensorFlowModelSettings.inputTensorName },
addBatchDimensionInput: false));
ITransformer mlModel = pipeline.Fit(CreateEmptyDataView());
return mlModel;
}
逐步使用 instruction - 我在调用方法 pipeline.Fit:
时出错System.ArgumentOutOfRangeException: 'Schema mismatch for input column 'image_tensor:0': expected Byte, got Single Arg_ParamName_Name
Link to image with code
using (var graph = new TFGraph ()) {
var model = File.ReadAllBytes (modelFile);
graph.Import (new TFBuffer (model));
using (var session = new TFSession (graph)) {
Console.WriteLine("Detecting objects");
foreach (var tuple in fileTuples) {
//var tensor = ImageUtil.CreateTensorFromImageFile (tuple.input, TFDataType.UInt8);
var tensor = ImageUtil.CreateTensorFromImageFileAlt (tuple.input, TFDataType.UInt8);
var runner = session.GetRunner ();
runner
.AddInput (graph ["image_tensor"] [0], tensor)
.Fetch (
graph ["detection_boxes"] [0],
graph ["detection_scores"] [0],
graph ["detection_classes"] [0],
graph ["num_detections"] [0]);
var output = runner.Run ();
var boxes = (float [,,])output [0].GetValue (jagged: false);
var scores = (float [,])output [1].GetValue (jagged: false);
var classes = (float [,])output [2].GetValue (jagged: false);
var num = (float [])output [3].GetValue (jagged: false);
DrawBoxes (boxes, scores, classes, tuple.input, tuple.output, MIN_SCORE_FOR_OBJECT_HIGHLIGHTING);
Console.WriteLine($"Done. See {_output_relative}");
}
}
}