如何在 LIBSVM 中定义不同标准的交叉验证?
How to define Cross Validation with Different Criteria in LIBSVM?
我正在将 LIBSVM 用于 ML 项目,我希望在交叉验证模式下作为输出(-v 选项)多个评估函数,如精度、召回率、fscore等等
其实我在关注这个guide。我进行了更改,但在编译时出现 eval.cpp:32:10: error: redefinition of 'validation_function' double (*validation_function)(const dvec_t&, const ivec_t&) = recall
之类的错误
此处是整个 eval.cpp 脚本
#include <iostream>
#include <vector>
#include <algorithm>
#include <errno.h>
#include <cstring>
#include "svm.h"
#include "eval.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
typedef std::vector<double> dvec_t;
typedef std::vector<int> ivec_t;
// prototypes of evaluation functions
double precision(const dvec_t& dec_values, const ivec_t& ty);
double recall(const dvec_t& dec_values, const ivec_t& ty);
double fscore(const dvec_t& dec_values, const ivec_t& ty);
double bac(const dvec_t& dec_values, const ivec_t& ty);
double auc(const dvec_t& dec_values, const ivec_t& ty);
double accuracy(const dvec_t& dec_values, const ivec_t& ty);
double ap(const dvec_t& dec_values, const ivec_t& ty);
// evaluation function pointer
//double eval_func(const dvec_t& dec_values, const ivec_t& ty);
// You can assign this pointer to any above prototype
double (*validation_function)(const dvec_t&, const ivec_t&) = accuracy;
double (*validation_function)(const dvec_t&, const ivec_t&) = precision;
double (*validation_function)(const dvec_t&, const ivec_t&) = recall;
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
double precision(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fp;
double precision;
tp = fp = 0;
for(i = 0; i < size; ++i) if(dec_values[i] >= 0){
if(ty[i] == 1) ++tp;
else ++fp;
}
if(tp + fp == 0){
fprintf(stderr, "warning: No positive predict label.\n");
precision = 0;
}else
precision = tp / (double) (tp + fp);
printf("Precision = %g%% (%d/%d)\n", 100.0 * precision, tp, tp + fp);
return precision;
}
double recall(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fn; // true_positive and false negative
double recall;
tp = fn = 0;
for(i = 0; i < size; ++i) if(ty[i] == 1){ // true label is 1
if(dec_values[i] >= 0) ++tp; // predict label is 1
else ++fn; // predict label is -1
}
recall = tp / (double) (tp + fn);
// print result in case of invocation in prediction
printf("Recall = %g%%\n", 100.0 * recall);
return recall; // return the evaluation value
}
double fscore(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fp, fn;
double precision, recall;
double fscore;
tp = fp = fn = 0;
for(i = 0; i < size; ++i)
if(dec_values[i] >= 0 && ty[i] == 1) ++tp;
else if(dec_values[i] >= 0 && ty[i] == -1) ++fp;
else if(dec_values[i] < 0 && ty[i] == 1) ++fn;
if(tp + fp == 0){
fprintf(stderr, "warning: No postive predict label.\n");
precision = 0;
}else
precision = tp / (double) (tp + fp);
if(tp + fn == 0){
fprintf(stderr, "warning: No postive true label.\n");
recall = 0;
}else
recall = tp / (double) (tp + fn);
if(precision + recall == 0){
fprintf(stderr, "warning: precision + recall = 0.\n");
fscore = 0;
}else
fscore = 2 * precision * recall / (precision + recall);
printf("F-score = %g\n", fscore);
return fscore;
}
double bac(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fp, fn, tn;
double specificity, recall;
double bac;
tp = fp = fn = tn = 0;
for(i = 0; i < size; ++i)
if(dec_values[i] >= 0 && ty[i] == 1) ++tp;
else if(dec_values[i] >= 0 && ty[i] == -1) ++fp;
else if(dec_values[i] < 0 && ty[i] == 1) ++fn;
else ++tn;
if(tn + fp == 0){
fprintf(stderr, "warning: No negative true label.\n");
specificity = 0;
}else
specificity = tn / (double)(tn + fp);
if(tp + fn == 0){
fprintf(stderr, "warning: No positive true label.\n");
recall = 0;
}else
recall = tp / (double)(tp + fn);
bac = (specificity + recall) / 2;
printf("BAC = %g\n", bac);
return bac;
}
// for auc and ap
class Comp{
const double *dec_val;
public:
Comp(const double *ptr): dec_val(ptr){}
bool operator()(int i, int j) const{
return dec_val[i] > dec_val[j];
}
};
double auc(const dvec_t& dec_values, const ivec_t& ty){
double roc = 0;
size_t size = dec_values.size();
size_t i;
std::vector<size_t> indices(size);
for(i = 0; i < size; ++i) indices[i] = i;
std::sort(indices.begin(), indices.end(), Comp(&dec_values[0]));
int tp = 0,fp = 0;
for(i = 0; i < size; i++) {
if(ty[indices[i]] == 1) tp++;
else if(ty[indices[i]] == -1) {
roc += tp;
fp++;
}
}
if(tp == 0 || fp == 0)
{
fprintf(stderr, "warning: Too few postive true labels or negative true labels\n");
roc = 0;
}
else
roc = roc / tp / fp;
printf("AUC = %g\n", roc);
return roc;
}
double accuracy(const dvec_t& dec_values, const ivec_t& ty){
int correct = 0;
int total = (int) ty.size();
size_t i;
for(i = 0; i < ty.size(); ++i)
if(ty[i] == (dec_values[i] >= 0? 1: -1)) ++correct;
printf("Accuracy = %g%% (%d/%d)\n",
(double)correct/total*100,correct,total);
return (double) correct / total;
}
double ap(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
std::vector<size_t> indices(size);
for(i = 0; i < size; ++i) indices[i] = i;
std::sort(indices.begin(), indices.end(), Comp(&dec_values[0]));
int p = 0, tp = 0;
double prev_recall = 0, area = 0;
for(i = 0; i < size; ++i) p += (ty[i] == 1);
if(p == 0) {
fprintf(stderr, "warning: Too few postive labels\n");
return 0;
}
for(i = 0; i < size; ++i) {
tp += (ty[indices[i]] == 1);
if(i+1 < size && dec_values[indices[i]] == dec_values[indices[i+1]])
continue;
double recall = (double)tp/p;
double precision = (double)tp/(double)(i+1);
area += precision*(recall-prev_recall);
prev_recall = recall;
}
printf("AP = %g\n", area);
return area;
}
double binary_class_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold)
{
int i;
int *fold_start = Malloc(int,nr_fold+1);
int l = prob->l;
int *perm = Malloc(int,l);
int *labels;
dvec_t dec_values;
ivec_t ty;
for(i=0;i<l;i++) perm[i]=i;
for(i=0;i<l;i++)
{
int j = i+rand()%(l-i);
std::swap(perm[i],perm[j]);
}
for(i=0;i<=nr_fold;i++)
fold_start[i]=i*l/nr_fold;
for(i=0;i<nr_fold;i++)
{
int begin = fold_start[i];
int end = fold_start[i+1];
int j,k;
struct svm_problem subprob;
subprob.l = l-(end-begin);
subprob.x = Malloc(struct svm_node*,subprob.l);
subprob.y = Malloc(double,subprob.l);
k=0;
for(j=0;j<begin;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
for(j=end;j<l;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
struct svm_model *submodel = svm_train(&subprob,param);
int svm_type = svm_get_svm_type(submodel);
if(svm_type == NU_SVR || svm_type == EPSILON_SVR){
fprintf(stderr, "wrong svm type");
exit(1);
}
labels = Malloc(int, svm_get_nr_class(submodel));
svm_get_labels(submodel, labels);
if(svm_get_nr_class(submodel) > 2)
{
fprintf(stderr,"Error: the number of class is not equal to 2\n");
exit(-1);
}
dec_values.resize(end);
ty.resize(end);
for(j=begin;j<end;j++) {
svm_predict_values(submodel,prob->x[perm[j]], &dec_values[j]);
ty[j] = (prob->y[perm[j]] > 0)? 1: -1;
}
if(labels[0] <= 0) {
for(j=begin;j<end;j++)
dec_values[j] *= -1;
}
svm_free_and_destroy_model(&submodel);
free(subprob.x);
free(subprob.y);
free(labels);
}
free(perm);
free(fold_start);
return validation_function(dec_values, ty);
}
void binary_class_predict(FILE *input, FILE *output){
int total = 0;
int *labels;
int max_nr_attr = 64;
struct svm_node *x = Malloc(struct svm_node, max_nr_attr);
dvec_t dec_values;
ivec_t true_labels;
int svm_type=svm_get_svm_type(model);
if (svm_type==NU_SVR || svm_type==EPSILON_SVR){
fprintf(stderr, "wrong svm type.");
exit(1);
}
labels = Malloc(int, svm_get_nr_class(model));
svm_get_labels(model, labels);
max_line_len = 1024;
line = (char *)malloc(max_line_len*sizeof(char));
while(readline(input) != NULL)
{
int i = 0;
double target_label, predict_label;
char *idx, *val, *label, *endptr;
int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
label = strtok(line," \t");
target_label = strtod(label,&endptr);
if(endptr == label)
exit_input_error(total+1);
while(1)
{
if(i>=max_nr_attr - 2) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
}
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x[i].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '[=10=]' || x[i].index <= inst_max_index)
exit_input_error(total+1);
else
inst_max_index = x[i].index;
errno = 0;
x[i].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != '[=10=]' && !isspace(*endptr)))
exit_input_error(total+1);
++i;
}
x[i].index = -1;
predict_label = svm_predict(model,x);
fprintf(output,"%g\n",predict_label);
double dec_value;
svm_predict_values(model, x, &dec_value);
true_labels.push_back((target_label > 0)? 1: -1);
if(labels[0] <= 0) dec_value *= -1;
dec_values.push_back(dec_value);
}
validation_function(dec_values, true_labels);
fscore(dec_values, true_labels);
precision(dec_values, true_labels);
recall(dec_values, true_labels);
free(labels);
free(x);
}
只有一个像 double (*validation_function)(const dvec_t&, const ivec_t&) = precision;
这样的评估函数,一切正常,我有一个像这样的正确输出:
optimization finished, #iter = 10012
nu = 0.519566
obj = -121646.218467, rho = -59.755150
nSV = 4299, nBSV = 4010
Total nSV = 4299
Precision = 81.18% (5875/7237)
Cross Validation = 81.18%
但是我想要这样的东西:
optimization finished, #iter = 10012
nu = 0.519566
obj = -121646.218467, rho = -59.755150
nSV = 4299, nBSV = 4010
Total nSV = 4299
Precision = 81.18% (5875/7237)
Recall = XX.XX% (5875/7237)
Accuracy = XX.XX% (5875/7237)
Cross Validation = 81.18%
这样可行吗?你们中有人有过类似经历吗?
此致
乍一看不是libsvm的问题,而是cpp的问题。还没有 运行 你的代码,但我认为你可能想要做的一个简单方法是
double* binary_class_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold)
{
...
double* eval = Malloc(double,3);
eval[0] = precision(dec_values, true_labels);
eval[1] = recall(dec_values, true_labels);
eval[2] = accuracy(dec_values, true_labels);
return eval;
}
由于每个 "evaluation functions" 都使用 printf
打印它们计算的值,如果您从 here 的原始代码开始,可能更容易简单地调用它们在 binary_class_cross_validation
中的 return validation_function(dec_values, ty);
语句之前排序。像这样:
double binary_class_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold)
{
// ...
precision(dec_values, ty);
recall(dec_values, ty);
accuracy(dec_values, ty);
return validation_function(dec_values, ty);
}
请注意,无论您将哪个函数设置为 validation_function
(默认情况下 auc
),都将计算 "Cross Validation" 值,该值打印在 [= 的 main()
函数中17=] 如 the tutorial.
中所述
我正在将 LIBSVM 用于 ML 项目,我希望在交叉验证模式下作为输出(-v 选项)多个评估函数,如精度、召回率、fscore等等
其实我在关注这个guide。我进行了更改,但在编译时出现 eval.cpp:32:10: error: redefinition of 'validation_function' double (*validation_function)(const dvec_t&, const ivec_t&) = recall
此处是整个 eval.cpp 脚本
#include <iostream>
#include <vector>
#include <algorithm>
#include <errno.h>
#include <cstring>
#include "svm.h"
#include "eval.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
typedef std::vector<double> dvec_t;
typedef std::vector<int> ivec_t;
// prototypes of evaluation functions
double precision(const dvec_t& dec_values, const ivec_t& ty);
double recall(const dvec_t& dec_values, const ivec_t& ty);
double fscore(const dvec_t& dec_values, const ivec_t& ty);
double bac(const dvec_t& dec_values, const ivec_t& ty);
double auc(const dvec_t& dec_values, const ivec_t& ty);
double accuracy(const dvec_t& dec_values, const ivec_t& ty);
double ap(const dvec_t& dec_values, const ivec_t& ty);
// evaluation function pointer
//double eval_func(const dvec_t& dec_values, const ivec_t& ty);
// You can assign this pointer to any above prototype
double (*validation_function)(const dvec_t&, const ivec_t&) = accuracy;
double (*validation_function)(const dvec_t&, const ivec_t&) = precision;
double (*validation_function)(const dvec_t&, const ivec_t&) = recall;
static char *line = NULL;
static int max_line_len;
static char* readline(FILE *input)
{
int len;
if(fgets(line,max_line_len,input) == NULL)
return NULL;
while(strrchr(line,'\n') == NULL)
{
max_line_len *= 2;
line = (char *) realloc(line,max_line_len);
len = (int) strlen(line);
if(fgets(line+len,max_line_len-len,input) == NULL)
break;
}
return line;
}
double precision(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fp;
double precision;
tp = fp = 0;
for(i = 0; i < size; ++i) if(dec_values[i] >= 0){
if(ty[i] == 1) ++tp;
else ++fp;
}
if(tp + fp == 0){
fprintf(stderr, "warning: No positive predict label.\n");
precision = 0;
}else
precision = tp / (double) (tp + fp);
printf("Precision = %g%% (%d/%d)\n", 100.0 * precision, tp, tp + fp);
return precision;
}
double recall(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fn; // true_positive and false negative
double recall;
tp = fn = 0;
for(i = 0; i < size; ++i) if(ty[i] == 1){ // true label is 1
if(dec_values[i] >= 0) ++tp; // predict label is 1
else ++fn; // predict label is -1
}
recall = tp / (double) (tp + fn);
// print result in case of invocation in prediction
printf("Recall = %g%%\n", 100.0 * recall);
return recall; // return the evaluation value
}
double fscore(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fp, fn;
double precision, recall;
double fscore;
tp = fp = fn = 0;
for(i = 0; i < size; ++i)
if(dec_values[i] >= 0 && ty[i] == 1) ++tp;
else if(dec_values[i] >= 0 && ty[i] == -1) ++fp;
else if(dec_values[i] < 0 && ty[i] == 1) ++fn;
if(tp + fp == 0){
fprintf(stderr, "warning: No postive predict label.\n");
precision = 0;
}else
precision = tp / (double) (tp + fp);
if(tp + fn == 0){
fprintf(stderr, "warning: No postive true label.\n");
recall = 0;
}else
recall = tp / (double) (tp + fn);
if(precision + recall == 0){
fprintf(stderr, "warning: precision + recall = 0.\n");
fscore = 0;
}else
fscore = 2 * precision * recall / (precision + recall);
printf("F-score = %g\n", fscore);
return fscore;
}
double bac(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
int tp, fp, fn, tn;
double specificity, recall;
double bac;
tp = fp = fn = tn = 0;
for(i = 0; i < size; ++i)
if(dec_values[i] >= 0 && ty[i] == 1) ++tp;
else if(dec_values[i] >= 0 && ty[i] == -1) ++fp;
else if(dec_values[i] < 0 && ty[i] == 1) ++fn;
else ++tn;
if(tn + fp == 0){
fprintf(stderr, "warning: No negative true label.\n");
specificity = 0;
}else
specificity = tn / (double)(tn + fp);
if(tp + fn == 0){
fprintf(stderr, "warning: No positive true label.\n");
recall = 0;
}else
recall = tp / (double)(tp + fn);
bac = (specificity + recall) / 2;
printf("BAC = %g\n", bac);
return bac;
}
// for auc and ap
class Comp{
const double *dec_val;
public:
Comp(const double *ptr): dec_val(ptr){}
bool operator()(int i, int j) const{
return dec_val[i] > dec_val[j];
}
};
double auc(const dvec_t& dec_values, const ivec_t& ty){
double roc = 0;
size_t size = dec_values.size();
size_t i;
std::vector<size_t> indices(size);
for(i = 0; i < size; ++i) indices[i] = i;
std::sort(indices.begin(), indices.end(), Comp(&dec_values[0]));
int tp = 0,fp = 0;
for(i = 0; i < size; i++) {
if(ty[indices[i]] == 1) tp++;
else if(ty[indices[i]] == -1) {
roc += tp;
fp++;
}
}
if(tp == 0 || fp == 0)
{
fprintf(stderr, "warning: Too few postive true labels or negative true labels\n");
roc = 0;
}
else
roc = roc / tp / fp;
printf("AUC = %g\n", roc);
return roc;
}
double accuracy(const dvec_t& dec_values, const ivec_t& ty){
int correct = 0;
int total = (int) ty.size();
size_t i;
for(i = 0; i < ty.size(); ++i)
if(ty[i] == (dec_values[i] >= 0? 1: -1)) ++correct;
printf("Accuracy = %g%% (%d/%d)\n",
(double)correct/total*100,correct,total);
return (double) correct / total;
}
double ap(const dvec_t& dec_values, const ivec_t& ty){
size_t size = dec_values.size();
size_t i;
std::vector<size_t> indices(size);
for(i = 0; i < size; ++i) indices[i] = i;
std::sort(indices.begin(), indices.end(), Comp(&dec_values[0]));
int p = 0, tp = 0;
double prev_recall = 0, area = 0;
for(i = 0; i < size; ++i) p += (ty[i] == 1);
if(p == 0) {
fprintf(stderr, "warning: Too few postive labels\n");
return 0;
}
for(i = 0; i < size; ++i) {
tp += (ty[indices[i]] == 1);
if(i+1 < size && dec_values[indices[i]] == dec_values[indices[i+1]])
continue;
double recall = (double)tp/p;
double precision = (double)tp/(double)(i+1);
area += precision*(recall-prev_recall);
prev_recall = recall;
}
printf("AP = %g\n", area);
return area;
}
double binary_class_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold)
{
int i;
int *fold_start = Malloc(int,nr_fold+1);
int l = prob->l;
int *perm = Malloc(int,l);
int *labels;
dvec_t dec_values;
ivec_t ty;
for(i=0;i<l;i++) perm[i]=i;
for(i=0;i<l;i++)
{
int j = i+rand()%(l-i);
std::swap(perm[i],perm[j]);
}
for(i=0;i<=nr_fold;i++)
fold_start[i]=i*l/nr_fold;
for(i=0;i<nr_fold;i++)
{
int begin = fold_start[i];
int end = fold_start[i+1];
int j,k;
struct svm_problem subprob;
subprob.l = l-(end-begin);
subprob.x = Malloc(struct svm_node*,subprob.l);
subprob.y = Malloc(double,subprob.l);
k=0;
for(j=0;j<begin;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
for(j=end;j<l;j++)
{
subprob.x[k] = prob->x[perm[j]];
subprob.y[k] = prob->y[perm[j]];
++k;
}
struct svm_model *submodel = svm_train(&subprob,param);
int svm_type = svm_get_svm_type(submodel);
if(svm_type == NU_SVR || svm_type == EPSILON_SVR){
fprintf(stderr, "wrong svm type");
exit(1);
}
labels = Malloc(int, svm_get_nr_class(submodel));
svm_get_labels(submodel, labels);
if(svm_get_nr_class(submodel) > 2)
{
fprintf(stderr,"Error: the number of class is not equal to 2\n");
exit(-1);
}
dec_values.resize(end);
ty.resize(end);
for(j=begin;j<end;j++) {
svm_predict_values(submodel,prob->x[perm[j]], &dec_values[j]);
ty[j] = (prob->y[perm[j]] > 0)? 1: -1;
}
if(labels[0] <= 0) {
for(j=begin;j<end;j++)
dec_values[j] *= -1;
}
svm_free_and_destroy_model(&submodel);
free(subprob.x);
free(subprob.y);
free(labels);
}
free(perm);
free(fold_start);
return validation_function(dec_values, ty);
}
void binary_class_predict(FILE *input, FILE *output){
int total = 0;
int *labels;
int max_nr_attr = 64;
struct svm_node *x = Malloc(struct svm_node, max_nr_attr);
dvec_t dec_values;
ivec_t true_labels;
int svm_type=svm_get_svm_type(model);
if (svm_type==NU_SVR || svm_type==EPSILON_SVR){
fprintf(stderr, "wrong svm type.");
exit(1);
}
labels = Malloc(int, svm_get_nr_class(model));
svm_get_labels(model, labels);
max_line_len = 1024;
line = (char *)malloc(max_line_len*sizeof(char));
while(readline(input) != NULL)
{
int i = 0;
double target_label, predict_label;
char *idx, *val, *label, *endptr;
int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0
label = strtok(line," \t");
target_label = strtod(label,&endptr);
if(endptr == label)
exit_input_error(total+1);
while(1)
{
if(i>=max_nr_attr - 2) // need one more for index = -1
{
max_nr_attr *= 2;
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
}
idx = strtok(NULL,":");
val = strtok(NULL," \t");
if(val == NULL)
break;
errno = 0;
x[i].index = (int) strtol(idx,&endptr,10);
if(endptr == idx || errno != 0 || *endptr != '[=10=]' || x[i].index <= inst_max_index)
exit_input_error(total+1);
else
inst_max_index = x[i].index;
errno = 0;
x[i].value = strtod(val,&endptr);
if(endptr == val || errno != 0 || (*endptr != '[=10=]' && !isspace(*endptr)))
exit_input_error(total+1);
++i;
}
x[i].index = -1;
predict_label = svm_predict(model,x);
fprintf(output,"%g\n",predict_label);
double dec_value;
svm_predict_values(model, x, &dec_value);
true_labels.push_back((target_label > 0)? 1: -1);
if(labels[0] <= 0) dec_value *= -1;
dec_values.push_back(dec_value);
}
validation_function(dec_values, true_labels);
fscore(dec_values, true_labels);
precision(dec_values, true_labels);
recall(dec_values, true_labels);
free(labels);
free(x);
}
只有一个像 double (*validation_function)(const dvec_t&, const ivec_t&) = precision;
这样的评估函数,一切正常,我有一个像这样的正确输出:
optimization finished, #iter = 10012
nu = 0.519566
obj = -121646.218467, rho = -59.755150
nSV = 4299, nBSV = 4010
Total nSV = 4299
Precision = 81.18% (5875/7237)
Cross Validation = 81.18%
但是我想要这样的东西:
optimization finished, #iter = 10012
nu = 0.519566
obj = -121646.218467, rho = -59.755150
nSV = 4299, nBSV = 4010
Total nSV = 4299
Precision = 81.18% (5875/7237)
Recall = XX.XX% (5875/7237)
Accuracy = XX.XX% (5875/7237)
Cross Validation = 81.18%
这样可行吗?你们中有人有过类似经历吗?
此致
乍一看不是libsvm的问题,而是cpp的问题。还没有 运行 你的代码,但我认为你可能想要做的一个简单方法是
double* binary_class_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold)
{
...
double* eval = Malloc(double,3);
eval[0] = precision(dec_values, true_labels);
eval[1] = recall(dec_values, true_labels);
eval[2] = accuracy(dec_values, true_labels);
return eval;
}
由于每个 "evaluation functions" 都使用 printf
打印它们计算的值,如果您从 here 的原始代码开始,可能更容易简单地调用它们在 binary_class_cross_validation
中的 return validation_function(dec_values, ty);
语句之前排序。像这样:
double binary_class_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold)
{
// ...
precision(dec_values, ty);
recall(dec_values, ty);
accuracy(dec_values, ty);
return validation_function(dec_values, ty);
}
请注意,无论您将哪个函数设置为 validation_function
(默认情况下 auc
),都将计算 "Cross Validation" 值,该值打印在 [= 的 main()
函数中17=] 如 the tutorial.