在迁移学习预训练模型上训练新数据集

Train new dataset on transfer learning pre-trained model

代码:

from keras.preprocessing import image as image_util 
from keras.applications.imagenet_utils import preprocess_input
from keras.applications.imagenet_utils import decode_predictions
from keras.applications import ResNet50
import numpy as np 
import argparse
import cv2
import time 

ap = argparse.ArgumentParser()
ap.add_argument("-i","--image",required= True,help ="path of the image")
args = vars(ap.parse_args())

# orig = cv2.imread(args["image"]) #Opencv function to load a image
start_time = time.time()
image = image_util.load_img(args["image"],target_size=(224,224))
image = image_util.img_to_array(image)

#print("!!!!!.....!!!!")
print(image.shape)


image = np.expand_dims(image,axis=0) #(224,224,3) --> (1,224,224,3)
#print("!!!!!.....!!!!")
print(image.shape)
image = preprocess_input(image)

#Loading the model 
model = ResNet50(weights="imagenet")
pred = model.predict(image)
#print("111!!!!!.....!!!!")
#print(pred)
p = decode_predictions(pred)
#print("222!!!!!.....!!!!")
#print(p)

for (i,(imagenetID,label,prob)) in enumerate(p[0]):
    print("{}. {}: {:.2f}%".format(i+1, label, prob*100))

ans = p[0][0]
ans = ans[1]
print("THE PREDICTED IMAGE IS: "+ans)

orig = cv2.imread(args["image"]) #Opencv function to load a image
(imagenetID,label,prob) = p[0][0]
cv2.putText(orig, "{},{:.2f}%".format(label,prob*100),(10,30),cv2.FONT_HERSHEY_COMPLEX,0.5,(0,0,0),1)
cv2.imshow("classification",orig)
cv2.waitKey(0)
print("--- %s seconds ---" % (time.time() - start_time))  

此代码适用于 imagenet 权重,并具有可以对各种图像进行分类的预训练模型。 我需要训练一个新对象,即我自己的数据集。 (比如说苹果)。 我应该如何更新添加新数据集的权重?

一般方法是仅采用预训练 CNN(例如 ResNet)的较低层,并在现有 CNN 之上添加新层。

一旦你有了你的模型,你可能应该在训练开始时锁定预训练层,这样你就不会破坏那些已经训练好的权重,然后在梯度稳定的几个周期后,你可以解锁这些层并继续训练。

删除预训练网络顶层的最简单方法是将 include_top 参数设置为 False

base_model = ResNet50(include_top=False, weights="imagenet") 

然后你可以像往常一样开始添加图层,即(n_classes指的是你要分类的类个数)

my_hidden1 = keras.layers.Dense(128, activation="relu")(base_model)
# rest of the custom layers
...
output = keras.layers.Dense(n_classes, activation="softmax")(previous_layer)
model = keras.Model(inputs=base_model.input, outputs=output)

在开头锁定预训练层

for layer in base_model.layers:
    layer.trainable = False

然后你可以compilefit你的新模型几个时期(即使有更大的学习率),即

optimizer = keras.optimizers.SGD(lr=0.2, momentum=0.9, decay=0.01)
model.compile(optimizer=optimizer, ...)
model.fit(...)

初始训练完成后,您可以解锁基础层并继续训练(通常,您希望在此阶段降低学习率)。

for layer in base_model.layers:
    layer.trainable = True

optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, decay=0.001)
model.compile(...)
model.fit(...)

请注意,每次锁定或解锁这些图层时都必须 运行 compile