如何在单个 ggplot2 中对齐图层(密度图和垂直线)
How to align layers (density plot and vertical line) in a single ggplot2
我正在尝试调整同时使用 stat_function
和 geom_vline
的绘图的图层。我的问题是垂直线与绿色区域没有完全对齐:
Density plot with a vertical line (not aligned)
在 this post 中,我看到了对齐两个单独绘图的解决方案,但是,在我的例子中,我想在同一个绘图中对齐。
all_mean <- mean(mtcars$wt,na.rm = T)%>% round(2)
all_sd <- sd(mtcars$wt,na.rm = T)%>% round(2)
my_score <- mtcars[1,"wt"]
dd <- function(x) { dnorm(x, mean=all_mean, sd=all_sd) }
z <- (my_score - all_mean)/all_sd
pc <- round(100*(pnorm(z)), digits=0)
t1 <- paste0(as.character(pc),"th percentile")
p33 <- all_mean + (qnorm(0.3333) * all_sd)
p67 <- all_mean + (qnorm(0.6667) * all_sd)
funcShaded <- function(x, lower_bound) {
y = dnorm(x, mean = all_mean, sd = all_sd)
y[x < lower_bound] <- NA
return(y)
}
greenShaded <- function(x, lower_bound) {
y = dnorm(x, mean = all_mean, sd = all_sd)
y[x > (all_mean*2)] <- NA
return(y)
}
ggplot(data.frame(x=c(min(mtcars$wt-2), max(mtcars$wt+2))), aes(x=x)) +
stat_function(fun=dd, colour="black") +
stat_function(fun = greenShaded, args = list(lower_bound = pc),
geom = "area", fill = "green", alpha = 1)+
stat_function(fun = funcShaded, args = list(lower_bound = my_score),
geom = "area", fill = "white", alpha = .9)+
geom_vline(aes(xintercept=my_score), colour="black")
stat_function
在您的范围内选择 n
个点,默认为 101。这意味着您的曲线分辨率有限。只需为 funcShaded
层增加 n
。
ggplot(data.frame(x=c(min(mtcars$wt-2), max(mtcars$wt+2))), aes(x=x)) +
stat_function(fun=dd, colour="black") +
stat_function(fun = greenShaded, args = list(lower_bound = pc),
geom = "area", fill = "green", alpha = 1)+
stat_function(fun = funcShaded, args = list(lower_bound = my_score),
geom = "area", fill = "white", alpha = .9, n = 1e3)+
geom_vline(aes(xintercept=my_score), colour="black")
我正在尝试调整同时使用 stat_function
和 geom_vline
的绘图的图层。我的问题是垂直线与绿色区域没有完全对齐:
Density plot with a vertical line (not aligned)
在 this post 中,我看到了对齐两个单独绘图的解决方案,但是,在我的例子中,我想在同一个绘图中对齐。
all_mean <- mean(mtcars$wt,na.rm = T)%>% round(2)
all_sd <- sd(mtcars$wt,na.rm = T)%>% round(2)
my_score <- mtcars[1,"wt"]
dd <- function(x) { dnorm(x, mean=all_mean, sd=all_sd) }
z <- (my_score - all_mean)/all_sd
pc <- round(100*(pnorm(z)), digits=0)
t1 <- paste0(as.character(pc),"th percentile")
p33 <- all_mean + (qnorm(0.3333) * all_sd)
p67 <- all_mean + (qnorm(0.6667) * all_sd)
funcShaded <- function(x, lower_bound) {
y = dnorm(x, mean = all_mean, sd = all_sd)
y[x < lower_bound] <- NA
return(y)
}
greenShaded <- function(x, lower_bound) {
y = dnorm(x, mean = all_mean, sd = all_sd)
y[x > (all_mean*2)] <- NA
return(y)
}
ggplot(data.frame(x=c(min(mtcars$wt-2), max(mtcars$wt+2))), aes(x=x)) +
stat_function(fun=dd, colour="black") +
stat_function(fun = greenShaded, args = list(lower_bound = pc),
geom = "area", fill = "green", alpha = 1)+
stat_function(fun = funcShaded, args = list(lower_bound = my_score),
geom = "area", fill = "white", alpha = .9)+
geom_vline(aes(xintercept=my_score), colour="black")
stat_function
在您的范围内选择 n
个点,默认为 101。这意味着您的曲线分辨率有限。只需为 funcShaded
层增加 n
。
ggplot(data.frame(x=c(min(mtcars$wt-2), max(mtcars$wt+2))), aes(x=x)) +
stat_function(fun=dd, colour="black") +
stat_function(fun = greenShaded, args = list(lower_bound = pc),
geom = "area", fill = "green", alpha = 1)+
stat_function(fun = funcShaded, args = list(lower_bound = my_score),
geom = "area", fill = "white", alpha = .9, n = 1e3)+
geom_vline(aes(xintercept=my_score), colour="black")