Hyperopt 调整参数卡住
Hyperopt tuning parameters get stuck
我正在测试使用 hyperopt 库调整 SVM 的参数。
通常,当我执行这段代码时,进度条停止并且代码卡住。
我不明白为什么。
这是我的代码:
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
X_train = normalize(X_train)
def hyperopt_train_test(params):
if 'decision_function_shape' in params:
if params['decision_function_shape'] == "ovo":
params['break_ties'] = False
clf = svm.SVC(**params)
y_pred = clf.fit(X_train, y_train).predict(X_test)
return precision_recall_fscore_support(y_test, y_pred, average='macro')[0]
space4svm = {
'C': hp.uniform('C', 0, 20),
'kernel': hp.choice('kernel', ['linear', 'sigmoid', 'poly', 'rbf']),
'degree': hp.uniform('degree', 10, 30),
'gamma': hp.uniform('gamma', 10, 30),
'coef0': hp.uniform('coef0', 15, 30),
'shrinking': hp.choice('shrinking', [True, False]),
'probability': hp.choice('probability', [True, False]),
'tol': hp.uniform('tol', 0, 3),
'decision_function_shape': hp.choice('decision_function_shape', ['ovo', 'ovr']),
'break_ties': hp.choice('break_ties', [True, False])
}
def f(params):
print(params)
precision = hyperopt_train_test(params)
return {'loss': -precision, 'status': STATUS_OK}
trials = Trials()
best = fmin(f, space4svm, algo=tpe.suggest, max_evals=35, trials=trials)
print('best:')
print(best)
我建议限制参数的 space,看看是否可行。将 probability
参数固定为 False 并查看模型是否训练。此外,根据文档,gamma 需要 {‘scale’, ‘auto’}
。
同时在每次迭代中打印出您的 params
以更好地了解导致模型卡住的组合。
我正在测试使用 hyperopt 库调整 SVM 的参数。 通常,当我执行这段代码时,进度条停止并且代码卡住。 我不明白为什么。
这是我的代码:
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
X_train = normalize(X_train)
def hyperopt_train_test(params):
if 'decision_function_shape' in params:
if params['decision_function_shape'] == "ovo":
params['break_ties'] = False
clf = svm.SVC(**params)
y_pred = clf.fit(X_train, y_train).predict(X_test)
return precision_recall_fscore_support(y_test, y_pred, average='macro')[0]
space4svm = {
'C': hp.uniform('C', 0, 20),
'kernel': hp.choice('kernel', ['linear', 'sigmoid', 'poly', 'rbf']),
'degree': hp.uniform('degree', 10, 30),
'gamma': hp.uniform('gamma', 10, 30),
'coef0': hp.uniform('coef0', 15, 30),
'shrinking': hp.choice('shrinking', [True, False]),
'probability': hp.choice('probability', [True, False]),
'tol': hp.uniform('tol', 0, 3),
'decision_function_shape': hp.choice('decision_function_shape', ['ovo', 'ovr']),
'break_ties': hp.choice('break_ties', [True, False])
}
def f(params):
print(params)
precision = hyperopt_train_test(params)
return {'loss': -precision, 'status': STATUS_OK}
trials = Trials()
best = fmin(f, space4svm, algo=tpe.suggest, max_evals=35, trials=trials)
print('best:')
print(best)
我建议限制参数的 space,看看是否可行。将 probability
参数固定为 False 并查看模型是否训练。此外,根据文档,gamma 需要 {‘scale’, ‘auto’}
。
同时在每次迭代中打印出您的 params
以更好地了解导致模型卡住的组合。