如何在已经 event_data("plotly_click")
How to color a clicked bar from barchart with r, plolty, shiny when having already event_data("plotly_click")
我试图通过从使用 r plotly and shiny 第 章重新创建一个示例来了解 event_data()
的工作原理用 shiny 链接视图:
https://plotly-r.com/linking-views-with-shiny.html#fig:plotlyEvents 这样我就可以为选定的栏着色。
首先,当我 运行 我得到的代码时:
”警告:与'sub_category'源ID绑定的'plotly_click'事件未注册。为了获取此事件数据,请将event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的地块 (p
)。
警告:未注册与 'order_date' 源 ID 关联的 'plotly_click' 事件。为了获取此事件数据,请将 event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的绘图 (p
)。
警告:未注册与 'sub_category' 源 ID 关联的 'plotly_click' 事件。为了获取此事件数据,请将 event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的绘图 (p
)。
警告:未注册与 'order_date' 源 ID 关联的 'plotly_click' 事件。为了获取此事件数据,请将 event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的地块 (p
)。"
然后我读到 event_register()
我正在尝试修改代码,但除了破坏它之外,我没有取得什么成就。
我还尝试使用 highlight()
为点击的栏着色,但我想我在这个例子中没有正确使用它,因为代码再次中断。您能否给我一些关于如何为所选条形和子类别着色以具有相同颜色的启发?非常感谢您的宝贵时间!
library(shiny)
library(plotly)
library(dplyr)
sales <- diamonds
sales$category = sales$cut
sales$sub_category = sales$color
sales$sales = sales$price
sales$order_date = sample(seq(as.Date('2020-01-01'), as.Date('2020-02-01'), by="day"),nrow(sales), replace = T)
ui <- fluidPage(
plotlyOutput("category", height = 200),
plotlyOutput("sub_category", height = 200),
plotlyOutput("sales", height = 300),
DT::dataTableOutput("datatable")
)
# avoid repeating this code
axis_titles <- . %>%
layout(
xaxis = list(title = ""),
yaxis = list(title = "Sales")
)
server <- function(input, output, session) {
# for maintaining the state of drill-down variables
category <- reactiveVal()
sub_category <- reactiveVal()
order_date <- reactiveVal()
# when clicking on a category,
observeEvent(event_data("plotly_click", source = "category"), {
category(event_data("plotly_click", source = "category")$x)
sub_category(NULL)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "sub_category"), {
sub_category(
event_data("plotly_click", source = "sub_category")$x
)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "order_date"), {
order_date(event_data("plotly_click", source = "order_date")$x)
})
output$category <- renderPlotly({
sales %>%
count(category, wt = sales) %>%
plot_ly(x = ~category, y = ~n, source = "category") %>%
axis_titles() %>%
layout(title = "Sales by category")
})
output$sub_category <- renderPlotly({
if (is.null(category())) return(NULL)
sales %>%
filter(category %in% category()) %>%
count(sub_category, wt = sales) %>%
plot_ly(x = ~sub_category, y = ~n, source = "sub_category") %>%
axis_titles() %>%
layout(title = category())
})
output$sales <- renderPlotly({
if (is.null(sub_category())) return(NULL)
sales %>%
filter(sub_category %in% sub_category()) %>%
count(order_date, wt = sales) %>%
plot_ly(x = ~order_date, y = ~n, source = "order_date") %>%
add_lines() %>%
axis_titles() %>%
layout(title = paste(sub_category(), "sales over time"))
})
output$datatable <- DT::renderDataTable({
if (is.null(order_date())) return(NULL)
sales %>%
filter(
sub_category %in% sub_category(),
as.Date(order_date) %in% as.Date(order_date())
)
})
}
shinyApp(ui, server)
给你伙计,我只是根据你点击的内容添加了颜色。
线图默认是绿色的,所以我们不用担心。
对于第一个图,如果单击 category(),我将改变红色。由于某种原因我无法直接改变它,所以我在情节之前创建了一个 plot_data 并且有 if else 语句来这样做(嵌套的 if_else 不起作用)
对于第二个情节,如果单击 sub_category(),我将改变绿色。
希望这就是您要找的!
library(shiny)
library(plotly)
library(dplyr)
sales <- diamonds
sales$category = sales$cut
sales$sub_category = sales$color
sales$sales = sales$price
sales$order_date = sample(seq(as.Date('2020-01-01'), as.Date('2020-02-01'), by="day"),nrow(sales), replace = T)
ui <- fluidPage(
plotlyOutput("category", height = 200),
plotlyOutput("sub_category", height = 200),
plotlyOutput("sales", height = 300),
DT::dataTableOutput("datatable")
)
# avoid repeating this code
axis_titles <- . %>%
layout(
xaxis = list(title = ""),
yaxis = list(title = "Sales")
)
server <- function(input, output, session) {
# for maintaining the state of drill-down variables
category <- reactiveVal()
sub_category <- reactiveVal()
order_date <- reactiveVal()
# when clicking on a category,
observeEvent(event_data("plotly_click", source = "category"), {
category(event_data("plotly_click", source = "category")$x)
sub_category(NULL)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "sub_category"), {
sub_category(
event_data("plotly_click", source = "sub_category")$x
)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "order_date"), {
order_date(event_data("plotly_click", source = "order_date")$x)
})
output$category <- renderPlotly({
print(category())
if (is.null(category())) {
plot_data <- sales %>%
count(category, wt = sales) %>%
mutate(current_color = "blue")
} else {
plot_data <- sales %>%
count(category, wt = sales) %>%
mutate(current_color = if_else(category %in% category(), "red", "blue"))
}
plot_ly(
plot_data, x = ~category, y = ~n, source = "category", type = "bar",
marker = list(color = ~current_color)
) %>%
axis_titles() %>%
layout(title = "Sales by category")
})
output$sub_category <- renderPlotly({
if (is.null(category())) return(NULL)
sales %>%
filter(category %in% category()) %>%
count(sub_category, wt = sales) %>%
mutate(current_color = if_else(sub_category %in% sub_category(), "green", "red")) %>%
plot_ly(
x = ~sub_category, y = ~n, source = "sub_category", type = "bar",
marker = list(color = ~current_color)
) %>%
axis_titles() %>%
layout(title = category())
})
output$sales <- renderPlotly({
if (is.null(sub_category())) return(NULL)
sales %>%
filter(sub_category %in% sub_category()) %>%
count(order_date, wt = sales) %>%
plot_ly(x = ~order_date, y = ~n, source = "order_date", line = list(color = "green")) %>%
add_lines() %>%
axis_titles() %>%
layout(title = paste(sub_category(), "sales over time"))
})
output$datatable <- DT::renderDataTable({
if (is.null(order_date())) return(NULL)
sales %>%
filter(
sub_category %in% sub_category(),
as.Date(order_date) %in% as.Date(order_date())
)
})
}
shinyApp(ui, server)
我试图通过从使用 r plotly and shiny 第 章重新创建一个示例来了解 event_data()
的工作原理用 shiny 链接视图:
https://plotly-r.com/linking-views-with-shiny.html#fig:plotlyEvents 这样我就可以为选定的栏着色。
首先,当我 运行 我得到的代码时:
”警告:与'sub_category'源ID绑定的'plotly_click'事件未注册。为了获取此事件数据,请将event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的地块 (p
)。
警告:未注册与 'order_date' 源 ID 关联的 'plotly_click' 事件。为了获取此事件数据,请将 event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的绘图 (p
)。
警告:未注册与 'sub_category' 源 ID 关联的 'plotly_click' 事件。为了获取此事件数据,请将 event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的绘图 (p
)。
警告:未注册与 'order_date' 源 ID 关联的 'plotly_click' 事件。为了获取此事件数据,请将 event_register(p, 'plotly_click')
添加到您希望从中获取事件数据的地块 (p
)。"
然后我读到 event_register()
我正在尝试修改代码,但除了破坏它之外,我没有取得什么成就。
我还尝试使用 highlight()
为点击的栏着色,但我想我在这个例子中没有正确使用它,因为代码再次中断。您能否给我一些关于如何为所选条形和子类别着色以具有相同颜色的启发?非常感谢您的宝贵时间!
library(shiny)
library(plotly)
library(dplyr)
sales <- diamonds
sales$category = sales$cut
sales$sub_category = sales$color
sales$sales = sales$price
sales$order_date = sample(seq(as.Date('2020-01-01'), as.Date('2020-02-01'), by="day"),nrow(sales), replace = T)
ui <- fluidPage(
plotlyOutput("category", height = 200),
plotlyOutput("sub_category", height = 200),
plotlyOutput("sales", height = 300),
DT::dataTableOutput("datatable")
)
# avoid repeating this code
axis_titles <- . %>%
layout(
xaxis = list(title = ""),
yaxis = list(title = "Sales")
)
server <- function(input, output, session) {
# for maintaining the state of drill-down variables
category <- reactiveVal()
sub_category <- reactiveVal()
order_date <- reactiveVal()
# when clicking on a category,
observeEvent(event_data("plotly_click", source = "category"), {
category(event_data("plotly_click", source = "category")$x)
sub_category(NULL)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "sub_category"), {
sub_category(
event_data("plotly_click", source = "sub_category")$x
)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "order_date"), {
order_date(event_data("plotly_click", source = "order_date")$x)
})
output$category <- renderPlotly({
sales %>%
count(category, wt = sales) %>%
plot_ly(x = ~category, y = ~n, source = "category") %>%
axis_titles() %>%
layout(title = "Sales by category")
})
output$sub_category <- renderPlotly({
if (is.null(category())) return(NULL)
sales %>%
filter(category %in% category()) %>%
count(sub_category, wt = sales) %>%
plot_ly(x = ~sub_category, y = ~n, source = "sub_category") %>%
axis_titles() %>%
layout(title = category())
})
output$sales <- renderPlotly({
if (is.null(sub_category())) return(NULL)
sales %>%
filter(sub_category %in% sub_category()) %>%
count(order_date, wt = sales) %>%
plot_ly(x = ~order_date, y = ~n, source = "order_date") %>%
add_lines() %>%
axis_titles() %>%
layout(title = paste(sub_category(), "sales over time"))
})
output$datatable <- DT::renderDataTable({
if (is.null(order_date())) return(NULL)
sales %>%
filter(
sub_category %in% sub_category(),
as.Date(order_date) %in% as.Date(order_date())
)
})
}
shinyApp(ui, server)
给你伙计,我只是根据你点击的内容添加了颜色。
线图默认是绿色的,所以我们不用担心。
对于第一个图,如果单击 category(),我将改变红色。由于某种原因我无法直接改变它,所以我在情节之前创建了一个 plot_data 并且有 if else 语句来这样做(嵌套的 if_else 不起作用)
对于第二个情节,如果单击 sub_category(),我将改变绿色。
希望这就是您要找的!
library(shiny)
library(plotly)
library(dplyr)
sales <- diamonds
sales$category = sales$cut
sales$sub_category = sales$color
sales$sales = sales$price
sales$order_date = sample(seq(as.Date('2020-01-01'), as.Date('2020-02-01'), by="day"),nrow(sales), replace = T)
ui <- fluidPage(
plotlyOutput("category", height = 200),
plotlyOutput("sub_category", height = 200),
plotlyOutput("sales", height = 300),
DT::dataTableOutput("datatable")
)
# avoid repeating this code
axis_titles <- . %>%
layout(
xaxis = list(title = ""),
yaxis = list(title = "Sales")
)
server <- function(input, output, session) {
# for maintaining the state of drill-down variables
category <- reactiveVal()
sub_category <- reactiveVal()
order_date <- reactiveVal()
# when clicking on a category,
observeEvent(event_data("plotly_click", source = "category"), {
category(event_data("plotly_click", source = "category")$x)
sub_category(NULL)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "sub_category"), {
sub_category(
event_data("plotly_click", source = "sub_category")$x
)
order_date(NULL)
})
observeEvent(event_data("plotly_click", source = "order_date"), {
order_date(event_data("plotly_click", source = "order_date")$x)
})
output$category <- renderPlotly({
print(category())
if (is.null(category())) {
plot_data <- sales %>%
count(category, wt = sales) %>%
mutate(current_color = "blue")
} else {
plot_data <- sales %>%
count(category, wt = sales) %>%
mutate(current_color = if_else(category %in% category(), "red", "blue"))
}
plot_ly(
plot_data, x = ~category, y = ~n, source = "category", type = "bar",
marker = list(color = ~current_color)
) %>%
axis_titles() %>%
layout(title = "Sales by category")
})
output$sub_category <- renderPlotly({
if (is.null(category())) return(NULL)
sales %>%
filter(category %in% category()) %>%
count(sub_category, wt = sales) %>%
mutate(current_color = if_else(sub_category %in% sub_category(), "green", "red")) %>%
plot_ly(
x = ~sub_category, y = ~n, source = "sub_category", type = "bar",
marker = list(color = ~current_color)
) %>%
axis_titles() %>%
layout(title = category())
})
output$sales <- renderPlotly({
if (is.null(sub_category())) return(NULL)
sales %>%
filter(sub_category %in% sub_category()) %>%
count(order_date, wt = sales) %>%
plot_ly(x = ~order_date, y = ~n, source = "order_date", line = list(color = "green")) %>%
add_lines() %>%
axis_titles() %>%
layout(title = paste(sub_category(), "sales over time"))
})
output$datatable <- DT::renderDataTable({
if (is.null(order_date())) return(NULL)
sales %>%
filter(
sub_category %in% sub_category(),
as.Date(order_date) %in% as.Date(order_date())
)
})
}
shinyApp(ui, server)