卷积 3D 图像与 2D 过滤器

Convolution 3D image with 2D filter

我有一张形状为 img.shape = (500, 439, 3)

的图像

卷积函数为

def convolution(image, kernel, stride=1, pad=0):

    n_h, n_w, _ = image.shape

    f = kernel.shape[0]
    kernel = np.repeat(kernel[None,:], 3, axis=0)

    n_H = int(((n_h + (2*pad) - f) / stride) + 1)
    n_W = int(((n_w + (2*pad) - f) / stride) + 1)
    n_C = 1

    out = np.zeros((n_H, n_W, n_C))

    for h in range(n_H):
        vert_start = h*stride
        vert_end = h*stride + f

        for w in range(n_W):
            horiz_start = w*stride
            horiz_end = w*stride + f

            for c in range(n_C):
                a_slice_prev = image[vert_start:vert_end,
                                     horiz_start:horiz_end, :]

                s = np.multiply(a_slice_prev, kernel)
                out[h, w, c] = np.sum(s, dtype=float)

    return out

我想在对图像应用任何 kernel/filter 之后查看图像,所以我得到了以下内容

img = plt.imread('cat.png')
kernel = np.arange(25).reshape((5, 5))
out2 = convolution(img, kernel)
plt.imshow(out2)
plt.show()

我明白了

s = np.multiply(a_slice_prev, kernel)

ValueError: operands could not be broadcast together with shapes (5,5,3) (3,5,5)

np.multiply 正在进行逐元素乘法。但是,您的论点没有匹配的维度。你可以用这个转置你的内核或图像以确保它可以工作:

kernel = kernel.transpose()

您可以在 np.multiply 通话之前执行此操作。

ValueError: operands could not be broadcast together with shapes (5,5,3) (3,5,5)

因为卷积是逐元素乘法,图像区域的形状应该是 (5,5,3),内核的形状应该是 (5,5,3),因此像这样重复你的内核:

kernel = np.arange(25).reshape((5, 5, 1))
kernel = np.repeat(kernel, 3, axis=2)