There is "KeyError:face" when i convert pascal dataset to tfrecord

There is "KeyError:face" when i convert pascal dataset to tfrecord

我尝试使用 tensorflow models, object_detection create_pascal_tf_record.py 重命名 create_face_tf_record.py 将 wider_face 数据集转换为 TF-Record:

D:[=10=]-STUDY\models\research>python object_detection\dataset_tools\create_face_tf_record.py \
                             --data_dir=D:/0-STUDY \
                             --year=widerface \
                             --output_path=D:[=10=]-STUDY\datasets\widerface\TF_data\train.record \
                             --set=train

包裹起来只是为了好看

输出:

2020-02-11 09:41:46.804523: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
WARNING:tensorflow:From object_detection\dataset_tools\create_face_tf_record.py:189: The name tf.app.run is deprecated. Please use tf.compat.v1.app.run instead.

WARNING:tensorflow:From object_detection\dataset_tools\create_face_tf_record.py:163: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead.

W0211 09:41:49.443757 16972 module_wrapper.py:139] From object_detection\dataset_tools\create_face_tf_record.py:163: The name tf.python_io.TFRecordWriter is deprecated. Please use tf.io.TFRecordWriter instead.

WARNING:tensorflow:From D:[=11=]-STUDY\models\research\object_detection\utils\label_map_util.py:138: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

W0211 09:41:49.445752 16972 module_wrapper.py:139] From D:[=11=]-STUDY\models\research\object_detection\utils\label_map_util.py:138: The name tf.gfile.GFile is deprecated. Please use tf.io.gfile.GFile instead.

I0211 09:41:49.448744 16972 create_face_tf_record.py:168] Reading from PASCAL widerface dataset.
I0211 09:41:49.491163 16972 create_face_tf_record.py:175] On image 0 of 12880
D:[=11=]-STUDY\models\research\object_detection\utils\dataset_util.py:79: FutureWarning: The behavior of this method will change in future versions. Use specific 'len(elem)' or 'elem is not None' test instead.
  if not xml:
Traceback (most recent call last):
  File "object_detection\dataset_tools\create_face_tf_record.py", line 189, in <module>
    tf.app.run()
  File "C:\ProgramData\Anaconda3\lib\site-packages\tensorflow_core\python\platform\app.py", line 40, in run
    _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
  File "C:\ProgramData\Anaconda3\lib\site-packages\absl\app.py", line 299, in run
    _run_main(main, args)
  File "C:\ProgramData\Anaconda3\lib\site-packages\absl\app.py", line 250, in _run_main
    sys.exit(main(argv))
  File "object_detection\dataset_tools\create_face_tf_record.py", line 182, in main
    tf_example = dict_to_tf_example(data, FLAGS.data_dir, label_map_dict,FLAGS.ignore_difficult_instances)
  File "object_detection\dataset_tools\create_face_tf_record.py", line 125, in dict_to_tf_example
    classes.append(label_map_dict[obj['name']])
KeyError: 'face'

树:

D:[=12=]-STUDY\> tree -L 2
.
├── datasets
│   └── widerface
|       └── TF_data
├── models
│   ├── AUTHORS
│   ├── CODEOWNERS
│   ├── CONTRIBUTING.md
│   ├── ISSUE_TEMPLATE.md
│   ├── LICENSE
│   ├── README.md
│   ├── WORKSPACE
│   ├── models.zip
│   ├── official
│   ├── research
│   ├── samples
│   ├── tutorials
│   └── widerface
└── widerface
    ├── Annotations
    ├── ImageSets
    ├── JPEGImages
    ├── WIDER_test
    ├── WIDER_train
    ├── WIDER_val
    └── wider_face_split

create_face_tf_record.py:

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Convert raw PASCAL dataset to TFRecord for object_detection.

Example usage:
    python object_detection/dataset_tools/create_pascal_tf_record.py \
        --data_dir=/home/user/VOCdevkit \
        --year=VOC2012 \
        --output_path=/home/user/pascal.record
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import hashlib
import io
import logging
import os

from lxml import etree
import PIL.Image
import tensorflow as tf

import pdb

from object_detection.utils import dataset_util
from object_detection.utils import label_map_util


flags = tf.app.flags
flags.DEFINE_string('data_dir', '', 'Root directory to raw PASCAL VOC dataset.')
flags.DEFINE_string('set', 'train', 'Convert training set, validation set or '
                    'merged set.')
flags.DEFINE_string('annotations_dir', 'Annotations',
                    '(Relative) path to annotations directory.')
flags.DEFINE_string('year', 'VOC2007', 'Desired challenge year.')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('label_map_path', 'object_detection/data/pascal_label_map.pbtxt',
                    'Path to label map proto')
flags.DEFINE_boolean('ignore_difficult_instances', False, 'Whether to ignore '
                     'difficult instances')
FLAGS = flags.FLAGS

SETS = ['train', 'val', 'trainval', 'test']
YEARS = ['fddb', 'widerface'] # ------------------1️⃣


def dict_to_tf_example(data,
                       dataset_directory,
                       label_map_dict,
                       ignore_difficult_instances=False,
                       image_subdirectory='JPEGImages'):
  """Convert XML derived dict to tf.Example proto.

  Notice that this function normalizes the bounding box coordinates provided
  by the raw data.

  Args:
    data: dict holding PASCAL XML fields for a single image (obtained by
      running dataset_util.recursive_parse_xml_to_dict)
    dataset_directory: Path to root directory holding PASCAL dataset
    label_map_dict: A map from string label names to integers ids.
    ignore_difficult_instances: Whether to skip difficult instances in the
      dataset  (default: False).
    image_subdirectory: String specifying subdirectory within the
      PASCAL dataset directory holding the actual image data.

  Returns:
    example: The converted tf.Example.

  Raises:
    ValueError: if the image pointed to by data['filename'] is not a valid JPEG
  """
  img_path = os.path.join(data['folder'], image_subdirectory, data['filename'])
  full_path = os.path.join(dataset_directory, img_path)
  with tf.gfile.GFile(full_path, 'rb') as fid:
    encoded_jpg = fid.read()
  encoded_jpg_io = io.BytesIO(encoded_jpg)
  image = PIL.Image.open(encoded_jpg_io)
  if image.format != 'JPEG':
    raise ValueError('Image format not JPEG')
  key = hashlib.sha256(encoded_jpg).hexdigest()

  width = int(data['size']['width'])
  height = int(data['size']['height'])

  xmin = []
  ymin = []
  xmax = []
  ymax = []
  classes = []
  classes_text = []
  truncated = []
  poses = []
  difficult_obj = []


  if 'object' in data:
    for obj in data['object']:
      difficult = bool(int(obj['difficult']))
      if ignore_difficult_instances and difficult:
        continue

      difficult_obj.append(int(difficult))

      xmin.append(float(obj['bndbox']['xmin']) / width)
      ymin.append(float(obj['bndbox']['ymin']) / height)
      xmax.append(float(obj['bndbox']['xmax']) / width)
      ymax.append(float(obj['bndbox']['ymax']) / height)
      classes_text.append(obj['name'].encode('utf8'))
      classes.append(label_map_dict[obj['name']])
      truncated.append(int(obj['truncated']))
      poses.append(obj['pose'].encode('utf8'))

  example = tf.train.Example(features=tf.train.Features(feature={
      'image/height': dataset_util.int64_feature(height),
      'image/width': dataset_util.int64_feature(width),
      'image/filename': dataset_util.bytes_feature(
          data['filename'].encode('utf8')),
      'image/source_id': dataset_util.bytes_feature(
          data['filename'].encode('utf8')),
      'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
      'image/encoded': dataset_util.bytes_feature(encoded_jpg),
      'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
      'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
      'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
      'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
      'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
      'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
      'image/object/class/label': dataset_util.int64_list_feature(classes),
      'image/object/difficult': dataset_util.int64_list_feature(difficult_obj),
      'image/object/truncated': dataset_util.int64_list_feature(truncated),
      'image/object/view': dataset_util.bytes_list_feature(poses),
  }))
  return example


def main(_):
  if FLAGS.set not in SETS:
    raise ValueError('set must be in : {}'.format(SETS))
  if FLAGS.year not in YEARS:
    raise ValueError('year must be in : {}'.format(YEARS))

  data_dir = FLAGS.data_dir
  years = ['fddb', 'widerface'] # ------------------2️⃣
  if FLAGS.year != 'merged':
    years = [FLAGS.year]

  writer = tf.python_io.TFRecordWriter(FLAGS.output_path)

  label_map_dict = label_map_util.get_label_map_dict(FLAGS.label_map_path)

  for year in years:
    logging.info('Reading from PASCAL %s dataset.', year)
    examples_path = os.path.join(data_dir, year, 'ImageSets', 'Main',
                                  FLAGS.set + '.txt') # ------------------3️⃣
    annotations_dir = os.path.join(data_dir, year, FLAGS.annotations_dir)
    examples_list = dataset_util.read_examples_list(examples_path)
    for idx, example in enumerate(examples_list):
      if idx % 100 == 0:
        logging.info('On image %d of %d', idx, len(examples_list))
      path = os.path.join(annotations_dir, example + '.xml')
      with tf.gfile.GFile(path, 'r') as fid:
        xml_str = fid.read()
      xml = etree.fromstring(xml_str)
      data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']

      tf_example = dict_to_tf_example(data, FLAGS.data_dir, label_map_dict,FLAGS.ignore_difficult_instances)
      writer.write(tf_example.SerializeToString())

  writer.close()


if __name__ == '__main__':
  tf.app.run()

1️⃣2️⃣3️⃣是和create_pascal_tf_record.py

的区别

接下来我该做什么?

您可以使用以下方法将 widerface 数据集转换为 TFRecords。

1.You 需要创建一个 config.py 文件。

# Training
TRAIN_WIDER_PATH = "widerface/WIDER_train/"

#Validation
VAL_WIDER_PATH = "widerface/WIDER_val/"

#Testing
TEST_WIDER_PATH = "widerface/WIDER_test/"

# Ground Truth
GROUND_TRUTH_PATH = "widerface/wider_face_split/"

# Output
OUTPUT_PATH = "datasets/widerface/TF_data/"  
  1. 生成 TFRecords 的代码(create_tf_record.py)。

代码如下:

import tensorflow as tf
import numpy
import cv2
import os
import hashlib

import config
from utils import dataset_util

def parse_test_example(f, images_path):
    height = None # Image height
    width = None # Image width
    filename = None # Filename of the image. Empty if image is not from file
    encoded_image_data = None # Encoded image bytes
    image_format = b'jpeg' # b'jpeg' or b'png'

    filename = f.readline().rstrip()
    if not filename:
        raise IOError()

    filepath = os.path.join(images_path, filename)

    image_raw = cv2.imread(filepath)

    encoded_image_data = open(filepath, "rb").read()
    key = hashlib.sha256(encoded_image_data).hexdigest()

    height, width, channel = image_raw.shape

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(int(height)),
        'image/width': dataset_util.int64_feature(int(width)),
        'image/filename': dataset_util.bytes_feature(filename.encode('utf-8')),
        'image/source_id': dataset_util.bytes_feature(filename.encode('utf-8')),
        'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
        'image/encoded': dataset_util.bytes_feature(encoded_image_data),
        'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
        }))


    return tf_example


def parse_example(f, images_path):
    height = None # Image height
    width = None # Image width
    filename = None # Filename of the image. Empty if image is not from file
    encoded_image_data = None # Encoded image bytes
    image_format = b'jpeg' # b'jpeg' or b'png'

    xmins = [] # List of normalized left x coordinates in bounding box (1 per box)
    xmaxs = [] # List of normalized right x coordinates in bounding box (1 per box)
    ymins = [] # List of normalized top y coordinates in bounding box (1 per box)
    ymaxs = [] # List of normalized bottom y coordinates in bounding box (1 per box)
    classes_text = [] # List of string class name of bounding box (1 per box)
    classes = [] # List of integer class id of bounding box (1 per box)
    poses = []
    truncated = []
    difficult_obj = []

    filename = f.readline().rstrip()
    if not filename:
        raise IOError()

    filepath = os.path.join(images_path, filename)

    image_raw = cv2.imread(filepath)

    encoded_image_data = open(filepath, "rb").read()
    key = hashlib.sha256(encoded_image_data).hexdigest()

    height, width, channel = image_raw.shape

    face_num = int(f.readline().rstrip())
    if not face_num:
      face_num += 1
        # raise Exception()

    for i in range(face_num):
        annot = f.readline().rstrip().split()
        if not annot:
            raise Exception()

        # WIDER FACE DATASET CONTAINS SOME ANNOTATIONS WHAT EXCEEDS THE IMAGE BOUNDARY
        if(float(annot[2]) > 25.0):
            if(float(annot[3]) > 30.0):
                xmins.append( max(0.005, (float(annot[0]) / width) ) )
                ymins.append( max(0.005, (float(annot[1]) / height) ) )
                xmaxs.append( min(0.995, ((float(annot[0]) + float(annot[2])) / width) ) )
                ymaxs.append( min(0.995, ((float(annot[1]) + float(annot[3])) / height) ) )
                classes_text.append(b'face')
                classes.append(1)
                poses.append("front".encode('utf8'))
                truncated.append(int(0))


    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(int(height)),
        'image/width': dataset_util.int64_feature(int(width)),
        'image/filename': dataset_util.bytes_feature(filename.encode('utf-8')),
        'image/source_id': dataset_util.bytes_feature(filename.encode('utf-8')),
        'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
        'image/encoded': dataset_util.bytes_feature(encoded_image_data),
        'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
        'image/object/difficult': dataset_util.int64_list_feature(int(0)),
        'image/object/truncated': dataset_util.int64_list_feature(truncated),
        'image/object/view': dataset_util.bytes_list_feature(poses),
        }))


    return tf_example


def run(images_path, description_file, output_path, no_bbox=False):
    f = open(description_file)
    writer = tf.python_io.TFRecordWriter(output_path)

    i = 0

    print("Processing {}".format(images_path))
    while True:
        try:
            if no_bbox:
                tf_example = parse_test_example(f, images_path)
            else:
                tf_example = parse_example(f, images_path)

            writer.write(tf_example.SerializeToString())
            i += 1

        except IOError:
            break
        except Exception:
            raise

    writer.close()

    print("Correctly created record for {} images\n".format(i))


def main(unused_argv):
    # Training
    if config.TRAIN_WIDER_PATH is not None:
        images_path = os.path.join(config.TRAIN_WIDER_PATH, "images")
        description_file = os.path.join(config.GROUND_TRUTH_PATH, "wider_face_train_bbx_gt.txt")
        output_path = os.path.join(config.OUTPUT_PATH, "train.tfrecord")
        run(images_path, description_file, output_path)

    # Validation
    if config.VAL_WIDER_PATH is not None:
        images_path = os.path.join(config.VAL_WIDER_PATH, "images")
        description_file = os.path.join(config.GROUND_TRUTH_PATH, "wider_face_val_bbx_gt.txt")
        output_path = os.path.join(config.OUTPUT_PATH, "val.tfrecord")
        run(images_path, description_file, output_path)

    # Testing. This set does not contain bounding boxes, so the tfrecord will contain images only
    if config.TEST_WIDER_PATH is not None:
        images_path = os.path.join(config.TEST_WIDER_PATH, "images")
        description_file = os.path.join(config.GROUND_TRUTH_PATH, "wider_face_test_filelist.txt")
        output_path = os.path.join(config.OUTPUT_PATH, "test.tfrecord")
        run(images_path, description_file, output_path, no_bbox=True)


if __name__ == '__main__':
    tf.app.run()  

运行 create_tf_record.py 生成TFRecord文件。

python create_tf_record.py  

希望这能回答您的问题,祝您学习愉快!