如何将数据框转换为 arules 的事务对象
How to convert a data frame to arules' transaction object
我正在尝试使用 R 中的库 arules 对数据集执行关联规则。数据集有一个事务列和 5 个项目列 - 我正在尝试将数据转换为列表然后使用 arules 但是因为有不止一个项目列,我不确定如何去做。
我的数据集如下所示:
Transaction Item1 Item2 Item3
12/09/2001 lipstick Bronzer Mascara
2/09/2001 Eyeshadow lipstick
13/09/2002 Powder Remover
14/09/2003 Nail varnish Lip gloss Eyeliner
下面是我通常用于一个交易列和一个项目列的代码。
library(arules)
Transactions <- split(data$item, data$transaction)
basketanalysis <- as(Transactions, "transactions")
如有任何帮助,我们将不胜感激。
这是我试过的。我认为您需要处理数据并创建列表。首先,我创建了事务 ID 以防万一。然后,我将数据转换为长格式数据框。到这个时候,所有产品都留在一列中。我删除了所有有 NA 的行。然后,我将产品转换为因素。对于每个组(交易 ID),我创建了包含所有产品的列表。 x
有一个名为 whatever
的列。这是您要用于创建事务对象的列表。
library(tidyverse)
library(arules)
mutate(mydata, transaction_id = 1:n()) %>%
pivot_longer(cols = contains("Item"), names_to = "item", values_to = "product") %>%
filter(complete.cases(product)) %>%
mutate(product = factor(product)) %>%
group_by(transaction_id) %>%
summarize(whatever = list(product)) -> x
# Assign transaction ID as name to whatever
names(x$whatever) <- x$transaction_id
$`1`
[1] lipstick Bronzer Mascara
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
$`2`
[1] Eyeshadow lipstick
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
$`3`
[1] Powder Remover
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
$`4`
[1] Nail varnish Lip gloss Eyeliner
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
最后,我创建了一个事务-class对象。
mybasket <- as(x$whatever, "transactions")
> summary(mybasket)
transactions as itemMatrix in sparse format with
4 rows (elements/itemsets/transactions) and
9 columns (items) and a density of 0.2777778
most frequent items:
lipstick Bronzer Eyeliner Eyeshadow Lip gloss (Other)
2 1 1 1 1 4
element (itemset/transaction) length distribution:
sizes
2 3
2 2
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 2.0 2.5 2.5 3.0 3.0
includes extended item information - examples:
labels
1 Bronzer
2 Eyeliner
3 Eyeshadow
includes extended transaction information - examples:
transactionID
1 1
2 2
3 3
数据
mydata <- structure(list(Transaction = c("12/09/2001", "2/09/2001", "13/09/2002",
"14/09/2003"), Item1 = c("lipstick", "Eyeshadow", "Powder", "Nail varnish"
), Item2 = c("Bronzer", "lipstick", "Remover", "Lip gloss"),
Item3 = c("Mascara", NA, NA, "Eyeliner")), row.names = c(NA,
-4L), class = c("tbl_df", "tbl", "data.frame"))
我正在尝试使用 R 中的库 arules 对数据集执行关联规则。数据集有一个事务列和 5 个项目列 - 我正在尝试将数据转换为列表然后使用 arules 但是因为有不止一个项目列,我不确定如何去做。
我的数据集如下所示:
Transaction Item1 Item2 Item3
12/09/2001 lipstick Bronzer Mascara
2/09/2001 Eyeshadow lipstick
13/09/2002 Powder Remover
14/09/2003 Nail varnish Lip gloss Eyeliner
下面是我通常用于一个交易列和一个项目列的代码。
library(arules)
Transactions <- split(data$item, data$transaction)
basketanalysis <- as(Transactions, "transactions")
如有任何帮助,我们将不胜感激。
这是我试过的。我认为您需要处理数据并创建列表。首先,我创建了事务 ID 以防万一。然后,我将数据转换为长格式数据框。到这个时候,所有产品都留在一列中。我删除了所有有 NA 的行。然后,我将产品转换为因素。对于每个组(交易 ID),我创建了包含所有产品的列表。 x
有一个名为 whatever
的列。这是您要用于创建事务对象的列表。
library(tidyverse)
library(arules)
mutate(mydata, transaction_id = 1:n()) %>%
pivot_longer(cols = contains("Item"), names_to = "item", values_to = "product") %>%
filter(complete.cases(product)) %>%
mutate(product = factor(product)) %>%
group_by(transaction_id) %>%
summarize(whatever = list(product)) -> x
# Assign transaction ID as name to whatever
names(x$whatever) <- x$transaction_id
$`1`
[1] lipstick Bronzer Mascara
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
$`2`
[1] Eyeshadow lipstick
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
$`3`
[1] Powder Remover
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
$`4`
[1] Nail varnish Lip gloss Eyeliner
Levels: Bronzer Eyeliner Eyeshadow Lip gloss lipstick Mascara Nail varnish Powder Remover
最后,我创建了一个事务-class对象。
mybasket <- as(x$whatever, "transactions")
> summary(mybasket)
transactions as itemMatrix in sparse format with
4 rows (elements/itemsets/transactions) and
9 columns (items) and a density of 0.2777778
most frequent items:
lipstick Bronzer Eyeliner Eyeshadow Lip gloss (Other)
2 1 1 1 1 4
element (itemset/transaction) length distribution:
sizes
2 3
2 2
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.0 2.0 2.5 2.5 3.0 3.0
includes extended item information - examples:
labels
1 Bronzer
2 Eyeliner
3 Eyeshadow
includes extended transaction information - examples:
transactionID
1 1
2 2
3 3
数据
mydata <- structure(list(Transaction = c("12/09/2001", "2/09/2001", "13/09/2002",
"14/09/2003"), Item1 = c("lipstick", "Eyeshadow", "Powder", "Nail varnish"
), Item2 = c("Bronzer", "lipstick", "Remover", "Lip gloss"),
Item3 = c("Mascara", NA, NA, "Eyeliner")), row.names = c(NA,
-4L), class = c("tbl_df", "tbl", "data.frame"))